ta có : \(x^2+1=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự ta đc \(y^2+1=\left(y+x\right)\left(y+z\right)\)
\(z^2+1=\left(z+x\right)\left(z+y\right)\)
ĐẶt \(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)
\(\Rightarrow A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(z+x\right)\left(z+y\right)\left(x+y\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)}{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)
tìm min p=x^2+x/x+y^2+y/y+z^2+z/z -1/x+y+z biết x^2+y^2+z^2=3
1.tìm GTNN
A=(x^2+x)(x^2+x-4)
2. cho x,y,z dương thỏa mãn x+y+z=1
tìm GTNN:
P=x^2/(y+z)+y^2/(x+z)+z^2/(x+y)
tìm x,y,z biết x/(y+z+1)=y/(x+z+2)=z/(y+x-3)=x+y+z
Cho x, y, z thỏa mãn (1/x+1/y+1/z)/(1/x+y+z)=1. tính giá trị biểu thức B=(x^21+y^21)(y^11+z^11)(z^2017+x^2017)
Cho x,y,z>0 và x+y+z=1 . Tìm MinP = ∑ \(\dfrac{1}{x+y+1}\)
Cho x,y,z>0 và x+y+z =1 . Tìm Min A = ∑ \(\dfrac{x}{y^2+x^2+1}\)
Cho x,y,z thõa mãn x+y+z+11=2√x+\(4\sqrt{Y-1}\)+\(6\sqrt{Z-2}\)
Tính x,y,z
tìm x,y,z biết
x+y+z+11= 2 căn x +4 căn y-1 + 6 căn z-2
Cho x,y,z>0 và x+y+z≤1. Tìm Min \(P=x^2+y^2+z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)