Lời giải:
$x+(x+1)+(x+2)+....+(x+30)=1240$
$(x+x+...+x)+(0+1+2+...+30)=1240$
$31\times x+465=1240$
$31\times x=1240-465=775$
$x=775:31=25$
Đúng 3
Bình luận (0)
Lời giải:
$x+(x+1)+(x+2)+....+(x+30)=1240$
$(x+x+...+x)+(0+1+2+...+30)=1240$
$31\times x+465=1240$
$31\times x=1240-465=775$
$x=775:31=25$
x + (x+1) + (x+2) + ..... + (x+30) =1240
x + ( x+1) + (x+2) + ( x+3) +...+ (x+30)= 1240
x+(x+1)+(x+2)+...+(x+30)=1240
Tìm x, biết:
x+(x+1)+(x+2)+...+(x+30)=1240
x+(x+1)+(x+2)+(x+3)+........+(x+30)=1240
x+(x+1)+(x+2)+(x+3)+.....+(x+30)=1240
x+(x+1)+(x+2)+(x+3)+.....+(x+30) = 1240
x+(x+1) + (x+2) ......(x+30)=1240 ..
Tìm x : x+(x+1)+(x+2)+...+(x+30)=1240