Đáp án D
Số phần tử của không gian mẫu là Ω = C 6 1 . C 6 1 = 6.6 = 36
Đáp án D
Số phần tử của không gian mẫu là Ω = C 6 1 . C 6 1 = 6.6 = 36
Tung đồng thời hai con xúc xắc cân đối và đồng chất. Tính xác suất để số chấm suất hiện trên hai con xúc xắc đều là số chẵn.
A. 1 3 .
B. 1 6 .
C. 1 4 .
D. 1 2 .
Gieo hai con xúc sắc và gọi kết quả xảy ra là tích hai số xuất hiện trên hai mặt. Không gian mẫu là bao nhiêu phần tử
A. 12
B. 20
C. 24
D. 36
Gieo hai con xúc sắc và gọi kết quả xảy ra là tích hai số xuất hiện trên hai mặt. Không gian mẫu là bao nhiêu phần tử
A. 12
B. 20
C. 24
D. 36
Gieo một con xúc sắc cân đối, đồng chất hai lần. Xác suất để cả hai lần đều xuất hiện mặt sáu chấm bằng
A. 1 36
B. 5 36
C. 35 36
D. 31 36
Gieo hai con xúc sắc cân đối và đồng chất 1 lần. Mỗi con xúc sắc có số chấm các mặt là 1,2,3,4,5,6, con xúc sắc còn lại có số chấm các mặt là 2,3,4,5,6,6. Tính xác suất để tổng số chấm xuất hiện bằng
A. 5/36
B. 1/5
C. 6/35
D. 1/6
Kết quả (b; c) của việc gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện của lần gieo thứ hai được thay vào phương trình bậc hai x 2 + b x + c = 0 . Xác suất để phương trình bậc hai đó vô nghiệm là
A. 7 12
B. 17 36
C. 23 36
D. 5 36
Gieo ngẫu nhiên một con xúc sắc cân đối đồng nhất 3 lần. Tính xác suất để tích số chấm của 3 lần gieo là một số chẵn.
A. 1 8 .
B. 7 8 .
C. 1 6 .
D. 5 6 .
Kết quả b , c của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó b là số chấm suất hiện trong lần gieo đầu, c là số chấm suất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai x 2 + b x + c = 0 . Tính xác suất để phương trình có nghiệm
A. 19 36
B. 1 18
C. 1 2
D. 17 36
Kết quả (b,c) của việc gieo con súc sắc cân đối và đồng chất hai lần (trong đó b là số chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai) được thay vào phương trình x 2 + b x + c x + 1 = 0 * . Xác suất để phương trình (*) vô nghiệm là :
A. 17 36 .
B. 1 2 .
C. 1 6 .
D. 19 36 .