Đặt \(f_{\left(x\right)}=x^4+ax^2+1\)
Để \(f_{\left(x\right)}⋮x^2+2x+1\)
thì \(f_{\left(x\right)}:x^2+2x+1\text{ }dư\text{ }0\)
\(\Rightarrow f_{\left(x\right)}:\left(x+1\right)^2\text{ }dư\text{ }0\)
\(\Rightarrow\) Theo định lí \(Bê-du:\) \(f_{\left(-1\right)}=0\)
\(\Rightarrow\left(-1\right)^4+a\cdot\left(-1\right)^2+1=0\\ \Rightarrow2+a=0\\ \Rightarrow a=-2\)
Vậy để \(x^4+ax^2+1⋮x^2+2x+1\)
thì \(a=-2\)