\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(\left(x^2+3x+1\right)=a\), ta được:
\(a\left(a+1\right)-6\)\(=a^2+a-6\)\(=\left(a^2+3a\right)-\left(2a+6\right)\)\(=a\left(a+3\right)-2\left(a+3\right)\)
\(=\left(a+3\right)\left(a-2\right)\)
Thay \(a=\left(x^2+3x+1\right)\), ta được:
\(=\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)