\(\left(x^2+2x\right)^2-6x^2-12x+9=0\)
\(\Leftrightarrow\left(x^2+2x\right)^2-6\left(x^2+2x\right)+9=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)^2=0\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
Vậy : pt có tập nghiệm \(S=\left\{-3,1\right\}\)
Đặt \(u=x^2+2x\)
Phương trình trở thành \(u^2-6u+9=0\)
\(\Leftrightarrow\left(u-3\right)^2=0\)
\(\Leftrightarrow u-3=0\Leftrightarrow u=3\)
hay \(x^2+2x=3\)
\(\Leftrightarrow x^2+2x-3=0\)
Ta có \(\Delta=2^2+4.3=16,\sqrt{\Delta}=4\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-2+4}{2}=1\\x=\frac{-2-4}{2}=-3\end{cases}}\)
Vậy phương trình có 2 nghiệm {1;-3}
\(\Leftrightarrow\left(x-1\right)^2\left(x+3\right)^2=0\)