\(\left(x+20\right)^{100}+\left|y+4\right|=0\)
mà \(\left(x+20\right)^{100}\ge0\forall x;\left|y+4\right|\ge0\forall y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-20\\y=-4\end{matrix}\right.\)
`(x+20)^100 + |y+4| =0`
ta có : `(x+2)^100 >= 0AAx`
`|y+4| >=0AAx`
`=>(x+20)^100 + |y+4| >=0 AA (x;y)`
Dấu ''='' xayra khi `{(x+20=0),(y+4=0):}`
`=> {(x=-20),(y=-4):}`
Vậy `{(x=-20),(y=-4):}` thì `(x+20)^100 + |y+4| =0`