Tìm Max:
\(A=-x^2+x+6=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\)
Với mọi giá trị của x ta có: \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow-\left(x-\dfrac{1}{2}\right)^2\le0\)
\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
Vậy Max A = \(\dfrac{25}{4}\)
Để A = \(\dfrac{25}{4}\) thì \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)