Sửa đề: \(x^2-4x+m-6=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot1\left(m-6\right)\)
\(=16-4m+24=-4m+40\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+40>0
=>-4m>-40
=>m<10
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=m-6\end{matrix}\right.\)
\(x_1^2+24=4x_2-x_1x_2\)
=>\(x_1^2+24=x_2\left(x_1+x_2\right)-x_1x_2\)
=>\(x_1^2-x_2^2=-24\)
=>\(\left(x_1-x_2\right)\left(x_1+x_2\right)=-24\)
=>\(x_1-x_2=-6\)
=>\(\left(x_1-x_2\right)^2=36\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=36\)
=>\(4^2-4\left(m-6\right)=36\)
=>4(m-6)=16-36=-20
=>m-6=-5
=>m=1(nhận)