Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Khuê

x2= 1

x2=3

x2=5 với x<0

x2=7 với x<0

x2=9

(x-2)2=2

(x-4)2=4

(x-6)2=6

(x-8)2=8

(x-10)2=10

(x-\(\sqrt{3}\) )2=3

(x-\(\sqrt{5}\))2=5

ILoveMath
26 tháng 11 2021 lúc 21:33

\(x^2=1\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(x^2=3\Rightarrow\left[{}\begin{matrix}x=-\sqrt{3}\\x=\sqrt{3}\end{matrix}\right.\)

\(x^2=5\Rightarrow\left[{}\begin{matrix}x=-\sqrt{5}\\x=\sqrt{5}\end{matrix}\right.\Rightarrow x=-\sqrt{5}\left(vì.x< 0\right)\)

\(x^2=7\Rightarrow\left[{}\begin{matrix}x=-\sqrt{7}\\x=\sqrt{7}\end{matrix}\right.\Rightarrow x=-\sqrt{7}\left(vì.x< 0\right)\)

\(x^2=9\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)

\(\left(x-2\right)^2=2\Rightarrow\left[{}\begin{matrix}x-2=-\sqrt{2}\\x-2=\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{2}\\x=2+\sqrt{2}\end{matrix}\right.\)

\(\left(x-4\right)^2=4\Rightarrow\left[{}\begin{matrix}x-2=-2\\x-2=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(\left(x-6\right)^2=6\Rightarrow\left[{}\begin{matrix}x-6=-\sqrt{6}\\x-6=\sqrt{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6-\sqrt{6}\\x=6+\sqrt{6}\end{matrix}\right.\)

\(\left(x-8\right)^2=8\Rightarrow\left[{}\begin{matrix}x-8=-2\sqrt{2}\\x-8=2\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8-2\sqrt{2}\\x=2+2\sqrt{2}\end{matrix}\right.\)

\(\left(x-10\right)^2=10\Rightarrow\left[{}\begin{matrix}x-10=-\sqrt{10}\\x-10=\sqrt{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-\sqrt{10}\\x=10+\sqrt{10}\end{matrix}\right.\)

\(\left(x-\sqrt{3}\right)^2=3\Rightarrow\left[{}\begin{matrix}x-\sqrt{3}=-\sqrt{3}\\x-\sqrt{3}=\sqrt{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\sqrt{3}\end{matrix}\right.\)

\(\left(x-\sqrt{5}\right)^2=5\Rightarrow\left[{}\begin{matrix}x-\sqrt{5}=-\sqrt{5}\\x-\sqrt{5}=\sqrt{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\sqrt{5}\end{matrix}\right.\)


Các câu hỏi tương tự
Lê Quỳnh Anh
Xem chi tiết
Jin
Xem chi tiết
hoàng anh tài
Xem chi tiết
Đoàn Quang Thái
Xem chi tiết
NGÔ BẢO NGÂN
Xem chi tiết
Lờ Ô Lô
Xem chi tiết
hoang minh duc
Xem chi tiết
Lâm Bảo Trân
Xem chi tiết
Như Đức Phạm
Xem chi tiết