b) Ta có: \(5^{x+4}-3\cdot5^{x+3}=2\cdot5^{11}\)
\(\Leftrightarrow2\cdot5^{x+3}=2\cdot5^{11}\)
\(\Leftrightarrow x+3=11\)
hay x=8
c) Ta có: \(2\cdot3^{x+2}+4\cdot3^{x+1}=10\cdot3^6\)
\(\Leftrightarrow18\cdot3^x+12\cdot3^x=10\cdot3^6\)
\(\Leftrightarrow30\cdot3^x=30\cdot3^5\)
Suy ra: x=5
d) Ta có: \(6\cdot8^{x-1}+8^{x+1}=6\cdot8^{19}+8^{21}\)
\(\Leftrightarrow6\cdot\dfrac{8^x}{8}+8^x\cdot8=6\cdot8^{19}+64\cdot8^{19}\)
\(\Leftrightarrow8^x\cdot\dfrac{35}{4}=70\cdot8^{19}\)
\(\Leftrightarrow8^x=8^{20}\)
Suy ra: x=20