Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Ta có \(T^2=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2.4\right)^2}{12+2\sqrt{4}}=1156\Rightarrow T=34\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Ta có \(T^2=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2.4\right)^2}{12+2\sqrt{4}}=1156\Rightarrow T=34\)
10. Cho pt \(x^2-12x+4=0\) có 2 nghiệm dương phân biệt \(x_1,x_2\). Không giải pt, hãy tính giá trị của biểu thức T=\(\dfrac{x_1^2+x_2^2}{\sqrt{x_1}+\sqrt{x_2}}\)
Cho PT \(x^2-19x+9+=0_{ }\) có 2 nghiệm dương phân việt x1,x2. Ko giải PT hãy tính T = \(\dfrac{x_1\sqrt{x_1}+x_2\sqrt{x_2}}{x_1^2+x_2^2}\)
Cho pt: x2 -6x+8=0 có 2 nghiệm phân biệt x1;x2. Không giải phương trình, hãy tính giá trị biểu thức B=\(\dfrac{x_1\sqrt{x_1}-x_2\sqrt{x_2}}{x_1-x_2}\)
Cho phương trình \(x^2-12x+4=0\) có 2 nghiệm dương phân biệt \(x_1;x_2\). Không giải phương trình
Tính \(T=\frac{x_1^2+x_2^2}{\sqrt{x_1}+\sqrt{x_2}}\)
6 Gọi \(x_1,x_2\) là 2 nghiệm của pt \(x^2-x-3=0\) .Không giải pt hãy tính giá trị của các biểu thức sau:
a. A=\(x_1^2+x_2^2\)
b. B=\(x_1^2x_2+x_1x_2^2\)
c. C=\(\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
d. D=\(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}\)
9. Cho pt \(x^2-2mx+m+2=0\)
a. Xác định m để pt có 2 nghiệm không âm \(x_1,x_2\)
b. Tính E= \(\sqrt{x_1}+\sqrt{x_2}\)
7. Cho pt \(x^2-2020x+2021=0\) có 2 nghiệm phân biệt \(x_1,x_2\). Không giải pt, hãy tính giá trị của các biểu thức
a. \(\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
b. \(x_1^2+x_2^2\)
cho pt : \(x^2+\sqrt{3}x-\sqrt{5}=0\)
c/m pt có 2 nghiệm \(x_1\)và \(x_2\) và tính \(\sqrt{x_1}+\sqrt{x_2}\)
Gọi
x1,x2 là hai nghiệm của pt \(x^2-2x-1=0\) tính giá trị của các biểu thức:
A=\(x_1^2+x_2^2\)
B=\(x_1^3+x_2^3\)
C=\(x_1^4+x_2^4\)
D=\(x_1^2.x_2+x_2^2.x_1\)
E=\(\dfrac{x_1^2}{x_2}+\dfrac{x_2^2}{x_1}\)
F=\(\left|x_1-x_2\right|\)
G=\(\dfrac{x_1}{x_2+1}+\dfrac{x_2}{x_1+1}\)
H=\(\left(x_1+\dfrac{2}{x_2}\right)\left(x_2+\dfrac{2}{x_1}\right)\)
Cho pt : \(x^2-\left(m-2\right)x+2m-79=0\)
a ) c / m pt có \(n_o\) \(\forall\) m
b ) Tìm m pt có \(n_o\) t / m : \(\sqrt{x_1}+\sqrt{x_2}=0\)
c ) Tìm m pt có \(n_o\) t / m : \(|x_1-x_2|=0\)
d ) Tìm m pt có 2 \(n_o\) trái dấu