\(x\) + \(\dfrac{1}{10}\) + \(x\) + \(\dfrac{1}{11}\) = \(x\) + \(\dfrac{1}{21}\)
\(x+x-x\) = \(\dfrac{1}{21}\) - \(\dfrac{1}{10}\) - \(\dfrac{1}{11}\)
\(x\) = - \(\dfrac{331}{2310}\)
\(x+\dfrac{1}{10}+x+\dfrac{1}{11}=x+\dfrac{1}{21}\)
\(x+x-x=\dfrac{1}{21}-\dfrac{1}{10}-\dfrac{1}{11}\)
\(x=\dfrac{-11}{210}-\dfrac{1}{11}\)
\(x=\dfrac{-331}{2310}\)