\(\left(x-y\right)\sqrt{\frac{xy}{\left(x-y\right)^2}}=\frac{\left(x-y\right)\sqrt{xy}}{\left|x-y\right|}=\frac{\left(x-y\right)\sqrt{xy}}{y-x}=-\sqrt{xy}\) (vì x<y<0)
\(\left(x-y\right)\sqrt{\frac{xy}{\left(x-y\right)^2}}=\frac{\left(x-y\right)\sqrt{xy}}{\left|x-y\right|}=\frac{\left(x-y\right)\sqrt{xy}}{y-x}=-\sqrt{xy}\)( Vì x < y < 0 )