`(x+y)(x^2-xy+y^2)=x^3+y^3`
Mà `x^3=1-y^3`
`=>(x+y)(x^2-xy+y^2)=1-y^3+y^3=1`
`(x+y)(x^2-xy+y^2)=x^3+y^3`
Mà `x^3=1-y^3`
`=>(x+y)(x^2-xy+y^2)=1-y^3+y^3=1`
Rút gọn rồi tính giá trị của biểu thức khi x=1;y=\(-3\frac{1}{4}\)
\(\frac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}\)\(\left[1:\frac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
1 .Cho x+y=a và xy=b , tính giá trị của biểu thức :
a. x^2+y^2
b. x^3+y^3
c. x^4+y^4
d. x^5+y^5
2 . a.Cho x+y=1 tính GTBT x^3+y^3+xy
b. cho x-y=1 tính GTBT x^3-y^3-xy
c. cho x+y=a , x^2+y^2=b tính x^3+y^3
Phân tích các đa thức sau thành nhân tử:
a) 2 ( x - 1 ) 3 - 5 ( x - 1 ) 2 - (x - 1);
b) x ( y - x ) 3 - y ( x - y ) 2 + xy(x - y);
c) xy(x + y)- 2x - 2y;
d) x ( x + y ) 2 - y ( x + y ) 2 + y 2 (x - y).
Cho biểu thức:
\(P=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\) (với x\(\ne+-\)y).Giá trị của biểu thức P khi x+y=5 và xy=\(-\frac{1}{2}\)
a)Cho x+y=1 và xy=-6
Tính x^2+y^2;x^3+y^3;x^5+y^5
b)Cho x-y=1 và xy=6
Tính x^2+y^2; x^3-y^3; x^5-y^5
g)(x+3y)(x-3y+2) h)(x+2y((x-2y+3) I)(x^2-xy+y^2)(x+y) J)(x^2-xy+y^2)(x+y) K)(5x-2y)(x^2-xy-1) L)(x^2y^2-xy+y)(x-y)
cho a=x^3y-xy^3+y^3z-yz^3+z^3x/x^2y-xy^2+y^2z-yz^2+z^2x-zx^2 a) với giá trị nào của x,y,z thì A có nghĩa b) tính giá trị của A khi x=-1/2, y=5/2,z=8
khi x+y=3 va xy=-1 thi gia tri bieu thuc x^3+y^3/3^2+1=?
Cho \(x-y=1\), chứng minh rằng giá trị dưới đây luôn là một hằng số:
\(P=x^2-xy-x+xy^2-y^3-y^2+5\)
\(Q=x^3-x^2y-x^2+xy^2-y^3-y^2+5x-5y-2015\)