Tìm x ≥ 0, biết:
a) 2x-7\(\sqrt{x}\)+3=0
b) 3\(\sqrt{x}\)+5 < 6
c) x-3\(\sqrt{x}\) -10 < 0
d) x- 5\(\sqrt{x}\) +6 = 0
e) x+ 5\(\sqrt{x}\) -14 < 0
1) x-\(7\sqrt{x-3}\) -9=0 2) \(\sqrt{x+3}\) =5-\(\sqrt{x-2}\) 3) \(\sqrt{x-4\sqrt{x+4}}\) =3 4) \(\sqrt{8-\dfrac{2}{3}x}-5\sqrt{2}\) =0 5) \(\sqrt{x^2-4x+4}\) =2-x
a : \(\dfrac{3}{\sqrt{x}-5}+\dfrac{20-2\sqrt{x}}{x-25}\)với x ≥ 0 x ≠ 25
b : \(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-2}{x-9}\)với x ≥ 0 x ≠ 9
c : \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\)với x ≥ 0 x ≠ 4
d : \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)với ≥ 0 x ≠ 1
Giải các phương trình sau:
a \(x^2-11=0\)
b \(x^2-12x+52=0\)
c \(x^2-3x-28=0\)
d \(x^2-11x+38=0\)
e \(6x^2+71x+175=0\)
f \(x^2-\left(\sqrt{2}+\sqrt{8}\right)x+4=0\)
g\(\left(1+\sqrt{3}\right)x^2-\left(2\sqrt{3}+1\right)x+\sqrt{3}=0\)
1, \(\sqrt{x-1}+\sqrt{x-4}=5\)
2, \(2x-7\sqrt{x}+5=0\)
3, \(\sqrt{2x+1}+\sqrt{x-3}=2\sqrt{x}\)
4, \(x-4\sqrt{x}+2021\sqrt{x-4}+4=0\)
5, \(\sqrt{2x-3}-\sqrt{x+1}=7\left(4-x\right)\)
a : \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)với x ≥ 0 x ≠ 9
b : \(\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\)với x ≥ 0 x ≠ 1
c : \(\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)với x ≥ 0 x ≠ 0
d : \(\dfrac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\dfrac{2}{\sqrt{x}+3}\)với x ≥ 0 x ≠ 1
1, \(K=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
2, \(\sqrt{x-3}-2.\sqrt{x^2-3x}=0\)
3, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
4, \(x-5\sqrt{x}+4=0\)
Rút gọn các biểu thức sau:
a) A=\(\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)(x≥0 , y≥0 , xy≠0)
b) B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)(x≥0 , y≥0 , x≠y)
c) C=\(\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)(a≥0 , a≠\(\dfrac{1}{4}\))
d) D=\(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)(a≥0 , a≠4)
1) x-7\(\sqrt{x-3}\) -9=0 2) \(\sqrt{x+3}\) =5-\(\sqrt{x-2}\) 3) \(\sqrt{x-4\sqrt{x+4}}\) =3