Cho Sk \(=\left(\sqrt{2}+1\right)^k\)\(+\left(\sqrt{2}-1\right)^k\) Với \(k\in N\)
Cmr : \(S_{2009}.S_{2010}-S_{4019}\)\(=2\sqrt{2}\)
1. tính giá trị biểu thức: B = \(x^2-2x-\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}.\frac{1+x\sqrt{x}-\sqrt{x}-x}{1+x}\) với x=2017
2. cho 3 số dương a,b,c thỏa \(b\ne c,\sqrt{a}+\sqrt{b}\ne\sqrt{c}\) và \(a+b=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\).chứng minh \(\frac{a+\left(\sqrt{a}-\sqrt{c}\right)^2}{b+\left(\sqrt{b}-\sqrt{c}\right)^2}=\frac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\)
3. cho \(S_k=\left(\sqrt{2}+1\right)^k+\left(\sqrt{2}-1\right)^k\)với \(k\in N\). chứng minh \(S_{2009}.S_{2010}-S_{4019}=2\sqrt{2}\)
4. cho x,y,z và \(\sqrt{x}+\sqrt{y}+\sqrt{z}\)là những số hữu tỉ. chứng minh \(\sqrt{x},\sqrt{y},\sqrt{z}\)là các số hữu tỉ
Cho biểu thức: \(S_n=\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}-1\right)^n\)
(với n nguyên dương)
a. Tính \(S_{2;}S_3\)(cái này mình tính được)
b.Chứng minh rằng: Với mọi m,n nguyên dương và m>n, ta có: \(S_{m+n}=S_m\cdot S_n-S_{m-n}\)
c. Tính \(S_4\)
Cho \(S_n=\sqrt{1+\left(\frac{n+1}{n}\right)^2}+\sqrt{\frac{1}{n^2}-2\left(\frac{1}{n}-1\right)}\)Tính: \(\frac{1}{S_1}+\frac{1}{S_2}+...+\frac{1}{S_{2018}}\)
Cho \(S_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)Chứng minh rằng: \(S_1+S_2+...+S_{2017}< \frac{2017}{2019}\)
Cho biểu thức:
\(S_n=\left(\sqrt{3}+\sqrt{2}\right)^n+\left(\sqrt{3}-\sqrt{2}\right)^n\)
với n nguyên dương.
cm: \(S_{2n}=S^{2_n}-2\)
Với mỗi số nguyên dương \(n\le2008\), đặt \(S_n=a^n+b^n\), với \(a=\frac{3+\sqrt{5}}{2};b=\frac{3-\sqrt{5}}{2}\)
CMR: với \(n\le1\), ta có \(S_{n+2}=\left(a+b\right)\left(a^{n+1}+b^{n+1}\right)-ab\left(a^n+b^n\right)\)
Cho tam giác ABC có ba góc nhọn với các đường cao AD, BE, CF cắt nhau tại H.
a)CMR:
Tam giác AEF đồng dạng với tam giác ABC. \(\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b)CMR:\(S_{DÈF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right)S_{ABC}\)
c)Cho biết AH=k.HD. CMR: \(\tan B.\tan C=k+1\)
d)CMR:\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)
Với k thuộc N sao CMR:
\(\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)
Cho \(S=\frac{\sqrt{3}+S_{n-1}}{1-\sqrt{3}.S_{n-1}}\) với n là số tự nhiên không nhỏ hơn 2. Biết \(S_1=1\). Tính\(_{S=S_1+S_2+...+S_{2005}}\)