Ta sẽ chứng minh:\(P\le\frac{5}{8}\Leftrightarrow5-8P=5+8abc-8\left(ab+bc+ca\right)\ge0\)
Ta có: \(5-8P=\frac{4ab\left[4\left(a+2bc-b-c\right)^2+\left(2c-1\right)^2\right]+c\left(2b-1\right)^2\left[4\left(a+b-c\right)^2+1\right]}{4ab+c\left(2b-1\right)^2}\ge0\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Theo nguyên lý Dirichlet, trong ba số 2a - 1; 2b - 1; 2c - 1 tồn tại ít nhất hai số cùng dấu
Giả sử \(\left(2a-1\right)\left(2b-1\right)\ge0\Leftrightarrow4ab-2a-2b+1\ge0\)
\(\Leftrightarrow4abc\ge2ac+2bc-c\Leftrightarrow2abc\ge ac+bc-\frac{c}{2}\)
Khi đó thì\(P=ab+bc+ca-2abc+abc\)\(\le ab+bc+ca-ac-bc+\frac{c}{2}+abc=ab+abc+\frac{c}{2}\)
\(\le\frac{a^2+b^2}{2}+abc+\frac{c}{2}=\frac{a^2+b^2+c^2+2abc}{2}-\frac{1}{2}\left(c^2-c+\frac{1}{4}\right)\)\(+\frac{1}{8}\)
\(=\frac{5}{8}-\frac{1}{2}\left(c-\frac{1}{2}\right)^2\le\frac{5}{8}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Gitpiptidtpidpuutpuzufzoufzourlwg
Cách khác nha (vô thống kê hỏi đáp của mình xem ảnh)
