Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Gia Hưng

Với a;b;c là các số thực không âm, chứng minh rằng

\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge2\left(a+b+c\right)\)

Đoàn Đức Hà
3 tháng 6 2021 lúc 10:28

\(a^2+2b^2+ab=\frac{7}{16}\left(a-b\right)^2+\frac{9}{16}\left(a+\frac{5}{3}b\right)^2\)

\(\Leftrightarrow\sqrt{a^2+2b^2+ab}=\sqrt{\frac{7}{16}\left(a-b\right)^2+\frac{9}{16}\left(a+\frac{5}{3}b\right)^2}\ge\sqrt{\frac{9}{16}\left(a+\frac{5}{3}b\right)^2}=\frac{3}{4}\left(a+\frac{5}{3}b\right)\)

Tương tự \(\sqrt{b^2+2c^2+bc}\ge\frac{3}{4}\left(b+\frac{5}{3}c\right),\sqrt{c^2+2a^2+ac}\ge\frac{3}{4}\left(c+\frac{5}{3}a\right)\)

Cộng lại vế theo vế ta được: 

\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge\frac{3}{4}\left(a+\frac{5}{3}b+b+\frac{5}{3}c+c+\frac{5}{3}a\right)\)

\(=2\left(a+b+c\right)\).

Dấu \(=\)khi \(a=b=c\ge0\).

Khách vãng lai đã xóa
Đanh Fuck Boy :))
3 tháng 6 2021 lúc 11:08

Còn cách khác nè :

Đặt \(P=\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ac}\)

Ta chứng minh \(P\ge2\left(a+b+c\right)\)

\(2P=\sqrt{\left(1+1+2\right)\left(a^2+2b^2+ab\right)}+\sqrt{\left(1+1+2\right)\left(b^2+2c^2+bc\right)}+\sqrt{\left(1+1+2\right)\left(c^2+2a^2+ac\right)}\)

Áp dụng bđt bunyakovsky ta được:

\(2P\ge a+2b+\sqrt{ab}+b+2c+\sqrt{bc}+c+2a+\sqrt{ac}\)

      \(=3\left(a+b+c\right)+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\ge4\left(a+b+c\right)\left(AM-GM\right)\)

Suy ra \(P\ge2\left(a+b+c\right)\left(đpcm\right)\)

Khách vãng lai đã xóa
Phan Nghĩa
3 tháng 6 2021 lúc 15:30

mọi người làm cách tối cổ quá , cách tổng quát luôn này 

Ta cần cm \(\sqrt{xa^2+yab+zb^2}\ge ma+nb\)

Nếu \(x=z=>m=n=\frac{\sqrt{x+y+z}}{2}\)

Nếu \(x\ne z=>\hept{\begin{cases}m+n=\sqrt{x+y+z}\\m-n=\frac{x-z}{\sqrt{x+y+z}}\end{cases}}\)

Áp dụng : \(\sqrt{a^2+ab+2b^2}\ge ma+nb\)

Với \(x=1;y=1;z=2\)

Vì \(x\ne z\)\(=>\hept{\begin{cases}m+n=\sqrt{x+y+z}\\m-n=\frac{x-z}{\sqrt{x+y+z}}\end{cases}}\)

\(< =>\hept{\begin{cases}m+n=\sqrt{4}\\m-n=-\frac{1}{\sqrt{4}}\end{cases}}\)

\(< =>\hept{\begin{cases}m+n=\sqrt{4}\\2m=\sqrt{4}-\frac{1}{\sqrt{4}}\end{cases}}\)

\(< =>\hept{\begin{cases}m+n=2\\m=1-\frac{1}{4}=\frac{3}{4}\end{cases}}\)

\(< =>\hept{\begin{cases}m=\frac{3}{4}\\n=\frac{5}{4}\end{cases}}\)

Nên ta cần chứng minh \(\sqrt{a^2+ab+2b^2}\ge\frac{3}{4}a+\frac{5}{4}b\)

đến đây thì bình phương 2 vế rồi chuyển vế là được bđt đúng nhé 

Khách vãng lai đã xóa
Bùi Gia Hưng
3 tháng 6 2021 lúc 11:19

Ta có 

\(\left[\left(a+\frac{b}{2}\right)^2+\left(\frac{\sqrt{7}b}{2}\right)^2\right]\left[\left(\frac{3}{2}\right)^2+\left(\frac{\sqrt{7}}{2}\right)^2\right]\ge\left(\frac{3\left(2a+b\right)}{4}+\frac{7a}{4}\right)^2\)

\(\Rightarrow\sqrt{a^2+2b^2+ab}\ge\frac{1}{2}\left(\frac{3a}{2}+\frac{5b}{2}\right).\)

Tương tự \(\sqrt{b^2+2c^2+bc}\ge\frac{1}{2}\left(\frac{3b}{2}+\frac{5c}{2}\right);\sqrt{c^2+2a^2+ca}\ge\frac{1}{2}\left(\frac{3c}{2}+\frac{5a}{2}\right)\)

Cộng 3 bất đẳng thức suy ra

\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge2\left(a+b+c\right)\)

đpcm ( đúng không)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lizy
Xem chi tiết
Nguyễn Lâm Ngọc
Xem chi tiết
shitbo
Xem chi tiết
Trương Tuệ Nga
Xem chi tiết
pham trung thanh
Xem chi tiết
Daffodil Clover
Xem chi tiết
Hoang Tran
Xem chi tiết
Hỏi Làm Gì
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết