\(a^2+2b^2+ab=\frac{7}{16}\left(a-b\right)^2+\frac{9}{16}\left(a+\frac{5}{3}b\right)^2\)
\(\Leftrightarrow\sqrt{a^2+2b^2+ab}=\sqrt{\frac{7}{16}\left(a-b\right)^2+\frac{9}{16}\left(a+\frac{5}{3}b\right)^2}\ge\sqrt{\frac{9}{16}\left(a+\frac{5}{3}b\right)^2}=\frac{3}{4}\left(a+\frac{5}{3}b\right)\)
Tương tự \(\sqrt{b^2+2c^2+bc}\ge\frac{3}{4}\left(b+\frac{5}{3}c\right),\sqrt{c^2+2a^2+ac}\ge\frac{3}{4}\left(c+\frac{5}{3}a\right)\)
Cộng lại vế theo vế ta được:
\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge\frac{3}{4}\left(a+\frac{5}{3}b+b+\frac{5}{3}c+c+\frac{5}{3}a\right)\)
\(=2\left(a+b+c\right)\).
Dấu \(=\)khi \(a=b=c\ge0\).
Còn cách khác nè :
Đặt \(P=\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ac}\)
Ta chứng minh \(P\ge2\left(a+b+c\right)\)
\(2P=\sqrt{\left(1+1+2\right)\left(a^2+2b^2+ab\right)}+\sqrt{\left(1+1+2\right)\left(b^2+2c^2+bc\right)}+\sqrt{\left(1+1+2\right)\left(c^2+2a^2+ac\right)}\)
Áp dụng bđt bunyakovsky ta được:
\(2P\ge a+2b+\sqrt{ab}+b+2c+\sqrt{bc}+c+2a+\sqrt{ac}\)
\(=3\left(a+b+c\right)+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\ge4\left(a+b+c\right)\left(AM-GM\right)\)
Suy ra \(P\ge2\left(a+b+c\right)\left(đpcm\right)\)
mọi người làm cách tối cổ quá , cách tổng quát luôn này
Ta cần cm \(\sqrt{xa^2+yab+zb^2}\ge ma+nb\)
Nếu \(x=z=>m=n=\frac{\sqrt{x+y+z}}{2}\)
Nếu \(x\ne z=>\hept{\begin{cases}m+n=\sqrt{x+y+z}\\m-n=\frac{x-z}{\sqrt{x+y+z}}\end{cases}}\)
Áp dụng : \(\sqrt{a^2+ab+2b^2}\ge ma+nb\)
Với \(x=1;y=1;z=2\)
Vì \(x\ne z\)\(=>\hept{\begin{cases}m+n=\sqrt{x+y+z}\\m-n=\frac{x-z}{\sqrt{x+y+z}}\end{cases}}\)
\(< =>\hept{\begin{cases}m+n=\sqrt{4}\\m-n=-\frac{1}{\sqrt{4}}\end{cases}}\)
\(< =>\hept{\begin{cases}m+n=\sqrt{4}\\2m=\sqrt{4}-\frac{1}{\sqrt{4}}\end{cases}}\)
\(< =>\hept{\begin{cases}m+n=2\\m=1-\frac{1}{4}=\frac{3}{4}\end{cases}}\)
\(< =>\hept{\begin{cases}m=\frac{3}{4}\\n=\frac{5}{4}\end{cases}}\)
Nên ta cần chứng minh \(\sqrt{a^2+ab+2b^2}\ge\frac{3}{4}a+\frac{5}{4}b\)
đến đây thì bình phương 2 vế rồi chuyển vế là được bđt đúng nhé
Ta có
\(\left[\left(a+\frac{b}{2}\right)^2+\left(\frac{\sqrt{7}b}{2}\right)^2\right]\left[\left(\frac{3}{2}\right)^2+\left(\frac{\sqrt{7}}{2}\right)^2\right]\ge\left(\frac{3\left(2a+b\right)}{4}+\frac{7a}{4}\right)^2\)
\(\Rightarrow\sqrt{a^2+2b^2+ab}\ge\frac{1}{2}\left(\frac{3a}{2}+\frac{5b}{2}\right).\)
Tương tự \(\sqrt{b^2+2c^2+bc}\ge\frac{1}{2}\left(\frac{3b}{2}+\frac{5c}{2}\right);\sqrt{c^2+2a^2+ca}\ge\frac{1}{2}\left(\frac{3c}{2}+\frac{5a}{2}\right)\)
Cộng 3 bất đẳng thức suy ra
\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge2\left(a+b+c\right)\)
đpcm ( đúng không)