Đường thẳng d cắt trục \(Ox\) tại \(C\left(0;a\right)\) và cắt trục \(Oy\) tại \(D\left(b;0\right)\) \(\left(a;b>0\right)\)
Để \(\Delta OCD\) cân tại \(O\) \(\Rightarrow OC=OD\)
mà \(\left\{{}\begin{matrix}OC=\sqrt[]{a^2}=a\\OD=b^2=b\end{matrix}\right.\left(a;b>0\right)\)
\(\Rightarrow a=b\)
Phương trình đường thẳng d có dạng
\(\dfrac{x}{a}+\dfrac{y}{b}=1\)
\(\Leftrightarrow\dfrac{x}{a}+\dfrac{y}{a}=1\)
\(\Leftrightarrow x+y-a=0\)
mà \(\left(d\right)\) qua điểm \(A\left(1;2\right)\)
\(\Rightarrow1+2-a=0\)
\(\Leftrightarrow a=3\)
Vậy phương trình đường thẳng \(\left(d\right):x+y-3=0\)
Đính chính
\(...OD=b^2=b\rightarrow OD=\sqrt[]{b^2}=b\)