Xét ΔOAM vuông tại A có \(cosAOM=\dfrac{OA}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AOM}=60^0\)
=>\(\widehat{AOK}=60^0\)
=>\(sđ\stackrel\frown{AK}_{nhỏ}=60^0\)
Xét ΔOAM vuông tại A có \(cosAOM=\dfrac{OA}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AOM}=60^0\)
=>\(\widehat{AOK}=60^0\)
=>\(sđ\stackrel\frown{AK}_{nhỏ}=60^0\)
Bài 7: Cho đường tròn (O; R), điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA,
MB với đường tròn (A, B là các tiếp điểm). Nối MO cắt cung nhỏ AB tại N
a) Cho OM = 2R. Tính AON và số đo A NB
b) Biết AMB = 36o . Tính góc ở tâm hợp bởi hai bán kính OA, OB.
Bài 8: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O)
cắt AB, AC tương ứng tại M và N.
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính MON , nếu BAC =40o
Bài 9: Trên cung nhỏ AB của đường tròn (O), cho hai điểm C, D sao cho cung AB được
chia thành ba cung bằng nhau, tức là AC =CD =DB . Bán kính OC và OD cắt dây AB lần
lượt tại E và F.
a) Hãy so sánh các đoạn thẳng AE, EF và FB
b) Chứng minh rằng AB // CD
Cả hình giúp mình nhé! mơn trc nà
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng
Cho đường tròn (O; R), lấy điểm M nằm ngoài (O) sao cho OM = 2R. Từ M kẻ tiếp tuyến MA và MB với (O) (A, B là các tiếp điểm).
a, Tính A O M ^
b, Tính A O B ^ và số đo cung A B ⏜ nhỏ
c, Biết đoạn thẳng OM cắt (O) tại C. Chứng minh C là điểm giữa của cung nhỏ A B ⏜
đường tròn (O,R). Điểm M ở ngoài đường tròn sao cho OM = 2R. Kẻ 2 tiếp tuyến MA, MB. nối OM cắt AB tại H. Hạ HD vuông góc với MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn ( O,R) cắt MA, MB lần lượt tại E và F
1. Cminh MAOB nội tiếp
2. Cminh OH.OM=OA^2
3. Tính theo R chu vi MEF
Cho đường tròn (O;R). Điểm M ở ngoài đường tròn sao cho OM = 2R. Kẻ hai tiếp tuyến MA, MB tới đường tròn (A, B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD ⊥ MA tại D. Đường tròn đường kính MB cắt BD tại I. K là trung điểm AO. Chứng minh: M,I,K thẳng hàng.
Cho đường tròn (O;R) và điểm M ở ngoài đường tròn sao cho OM=8/5 R . Kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm), đường thẳng AB cắt OM tại K.
b) Tính MA, AB, OK theo R.
Cho đường tròn tâm O bán kính R và một điểm M sao cho OM=2R,từ M kẻ hai tiếp tuyến MA,MB của đường tròn tâm O bán kính R (A,B là tiếp điểm).
a)Chứng minh tam giác MAB đều,tính AM theo R
b)Qua điểm C thuộc ucng nhỏ AB vẽ tiếp tuyến với đường tròn tâm O bán kính R cắt MA tại E,cắt MB tại F,OF cắt AB tại K,OE cắt AB tại H.Chứng minh EK vuống góc với OF
c)Khi số đo cung BC=90 độ.Tính EF và diện tích tam giác OHK theo R
Từ điểm M nằm ngoài (O) vẽ các tiếp tuyến MA,MB (A, B là các tiếp điểm).Lấy điểm C thuộc cung AB lớn, kẻ AK vuông góc BC tại K. Gọi I là trung điểm của AK, CI cắt (O) tại E khác C. Tia ME cắt (O) tại F
a) CM: OM là tiếp tuyến của đường tròn ngoại tiếp tam giác MEA
b). CM: khi C di chuyển trên cung AB lớn thì EF có độ dài không đổi
Cho đường tròn tâm O bán kính R. Từ điểm M là điểm ngoài đường tròn kẻ hai tia tiếp tuyến MA; MB (A,B là tiếp điểm) và cát tuyến đi qua M cắt đường tròn tại C, D (C nằm giữa M và D) cung CAD nhỏ hơn cung CBD. Gọi E là giao điểm của AB với OM.
a. Chứng minh DEC = 2.DBC.
b. Từ O kẻ tia Ot vuông góc với CD cắt tia BA ở K. Chứng minh KC và KD là tiếp tuyến của đường tròn O.
Cho đường tròn (O;R) và điểm M ở ngoài đường tròn sao cho OM=8/5 R . Kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm), đường thẳng AB cắt OM tại K.
a) Chứng minh K là trung điểm của AB.