Xét tam giác BCK vuông tại K có KF là đường trung tuyến nên \(KF=\dfrac{BC}{2}=FB\). Suy ra tam giác FBK cân tại F.
Từ đó FI vuông góc với BK.
Ta có \(\widehat{EIF}=90^o-\widehat{BIE}=90^o-\widehat{KIN}=\widehat{KNI}=\widehat{FBE}\).
Suy ra tứ giác EBIF nội tiếp.
Từ đó \(\widehat{AFE}=90^o-\widehat{BFE}=90^o-\widehat{BIE}=90^o-\widehat{KIN}=\widehat{KNI}=\widehat{ACE}\) nên tứ giác AEFC nội tiếp.
Ta có \(\widehat{EAF}=\widehat{ECF}=\widehat{ABE}\) nên AN là tiếp tuyến của (ABE).
