f: \(\dfrac{2}{\sqrt{6}-\sqrt{5}}=2\sqrt{6}+2\sqrt{5}\)
l: \(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\sqrt{10}-\sqrt{7}\)
f: \(\dfrac{2}{\sqrt{6}-\sqrt{5}}=2\sqrt{6}+2\sqrt{5}\)
l: \(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\sqrt{10}-\sqrt{7}\)
Đề : Trục căn thức ở mẫu
f) \(\dfrac{2}{\sqrt{6}-\sqrt{5}}\) l) \(\dfrac{3}{\sqrt{10}+\sqrt{7}}\) m) \(\dfrac{1}{\sqrt{x}-\sqrt{y}}\) ( x>0 ,y>0,\(x\ne y\) )
o) \(\dfrac{2ab}{\sqrt{a}-\sqrt{b}}\) (\(a\ge0,b\ge0,a\ne b\))
P) \(\dfrac{P}{2\sqrt{P}-1}\) (\(P\ge0\) , \(P\ne\dfrac{1}{4}\))
Đề : Trục căn thức ở mẫu
a) \(\dfrac{5}{\sqrt{10}}\) b) \(\dfrac{5}{2\sqrt{5}}\) c) \(\dfrac{1}{3\sqrt{20}}\)
d) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}\) e) \(\dfrac{y+b\sqrt{y}}{b\sqrt{y}}\) (với \(b\ge0\) và\(b\ne0\) )
Khử mẫu của biểu thức dưới dấu căn bậc hai
a) \(\sqrt{\dfrac{5x^3}{49y}}\)
với x ≥ 0, y >0
b) 7xy\(\sqrt{\dfrac{-3}{xy}}\)
với x<0, y>0
1.Gpt: \(\dfrac{6}{x-3\sqrt{x-2}+7}=\dfrac{1}{\sqrt{x-2}}+\dfrac{\sqrt{3}}{3\sqrt{2\sqrt{x-2}}-3}\)
2.Ghpt: \(\left\{{}\begin{matrix}x^2-y-z=0\\x^3-y^2-z^2+2=0\end{matrix}\right.\)
Rút gọn các biểu thức sau:
a) A=\(\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)(x≥0 , y≥0 , xy≠0)
b) B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)(x≥0 , y≥0 , x≠y)
c) C=\(\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)(a≥0 , a≠\(\dfrac{1}{4}\))
d) D=\(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)(a≥0 , a≠4)
Rút gọn các biểu thức sau:
b) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\) x \(\ne\) 1, y \(\ne\) 1, y > 0
GIẢI HPT
\(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\\\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}=2\dfrac{1}{6}\end{matrix}\right.\)
TRục căn thức ở mẫu A =\(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}\)
\(\dfrac{\sqrt{27}-\sqrt{15}}{3-\sqrt{5}}+\dfrac{4}{2+\sqrt{3}}-\dfrac{6}{\sqrt{3}}\)
\(\dfrac{x-y}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)