A(1;1); B(3;2); C(1;3)
\(AB=\sqrt{\left(3-1\right)^2+\left(2-1\right)^2}=\sqrt{2^2+1^2}=\sqrt5\)
\(BC=\sqrt{\left(1-3\right)^2+\left(3-2\right)^2}=\sqrt5\)
\(AC=\sqrt{\left(1-1\right)^2+\left(3-1\right)^2}=2\)
Xét ΔABC có \(cosBAC=\frac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\frac{5+4-5}{2\cdot\sqrt5\cdot2}=\frac{4}{4\sqrt5}=\frac{1}{\sqrt5}\)
=>\(\hat{BAC}\) ≃63 độ
=>\(\hat{AB;AC}\) ≃\(63^0\)