Trong mặt phẳng Oxy phép đối xứng tâm I biến M(6; -9) thành M'(3;7). Tọa độ của tâm đối xứng I là:
A. I(-3/2; -8)
B. (-3;16)
C. (9/2; -1)
D. I(-3/2; -1)
Trong mặt phẳng Oxy cho điểm M(2;-6) và điểm I(1;4). Phép đối xứng tâm I biến M thành M’ thì tọa độ M’ là:
A. M’(0;14)
B. M’(14;0)
C. M’(-3/2;-2)
D. M’(-1/2;5)
Trong mặt phẳng Oxy cho điểm I(2; -5). Phép đối xứng tâm I biến M(x; y) thành M'(3; 7). Tọa độ của M là:
A. M(5/2;1)
B. M(7;-3)
C. M(-1;-12)
D. M(1;-17)
Trong mặt phẳng Oxy cho điểm M(-3;7). Phép đối xứng tâm O biến M thành M’ thì tọa độ M’ là:
A. M’(-3;-7)
B. M’(3;-7)
C. M’(7;-3)
D. M’(7;3)
Trong mặt phẳng Oxy, cho hai điểm I(1; 2), M(-2; 3), đường thẳng d có phương trình 3x – y + 9 = 0 và đường tròn (C) có phương trình: x 2 + y 2 + 2 x − 6 y + 6 = 0 .
Hãy xác định tọa độ của điểm M’, phương trình của đường thẳng d’ và đường tròn (C’) theo thứ tự là ảnh của M, d và (C) qua
a) Phép đối xứng qua gốc tọa độ;
b) Phép đối xứng qua tâm I.
Trong mặt phẳng Oxy cho điểm M(-1;3). Phép đối xứng trục Ox biến M thành M’ thì tọa độ M’ là:
A. M’(-1;3)
B. M’(1;3)
C. M’(-1;-3)
D. M’(1;-3)
Trong mặt phẳng Oxy, thực hiện liên tiếp phép quay tâm O góc quay - 45 o và phép đối xứng tâm O thì điểm M(1;1) biến thành điểm M’’ có tọa độ là:
A. (-1;0)
B. (√2;0)
C. (√2;-√2)
D. (-√2;0)
Trong mặt phẳng với hệ tọa độ Oxy, tìm tọa độ điểm M’ là ảnh của điểm M(2 ; 1) qua phép đối xứng tâm I(3 ;-2).
A. M'(1;-3)
B. M'(-5;4)
C. M'(4;-5)
D. M'(1;5)
Trong mặt phẳng Oxy, thực hiện liên tiếp phép đối xứng trục Oy và phép quay tâm O góc quay 90 o biến điểm M(1;1) thành điểm M’’. Tọa độ M’’ là:
A. (-1;1)
B. (-1;-1)
C.(1;-1)
D. (-√2;-√2)