Trong mặt phẳng Oxy, cho hai điểm I(1; 2), M(-2; 3), đường thẳng d có phương trình 3x – y + 9 = 0 và đường tròn (C) có phương trình: x 2 + y 2 + 2 x − 6 y + 6 = 0 .
Hãy xác định tọa độ của điểm M’, phương trình của đường thẳng d’ và đường tròn (C’) theo thứ tự là ảnh của M, d và (C) qua
a) Phép đối xứng qua gốc tọa độ;
b) Phép đối xứng qua tâm I.
Trong mặt phẳng Oxy cho điểm I(2; -5). Phép đối xứng tâm I biến M(x; y) thành M'(3; 7). Tọa độ của M là:
A. M(5/2;1)
B. M(7;-3)
C. M(-1;-12)
D. M(1;-17)
Trong mặt phẳng Oxy, cho v → = ( 2 ; 0 ) và điểm M(1; 1).
a) Tìm tọa độ của điểm M’ là ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép tịnh tiến theo vectơ v →
b) Tìm tọa độ của điểm M" là ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ v → và phép đối xứng qua trục Oy.
Trong mặt phẳng với hệ tọa độ Oxy, cho vectơ v → = ( 2 ; - 1 ) và điểm M(-3;1) Tìm tọa độ ảnh M' của điểm M qua phép tịnh tiến theo vectơ v → .
A. (5;3)
B. (1;-1)
C. (-1;1)
D. (1;1)
Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(1; 5), B(‒3; 2). Biết các điểm A, B theo thứ tự là ảnh của các điểm M, N qua phép vị tự tâm O, tỉ số k = -2 . Độ dài đoạn thẳng MN là
A. 5 2
B. 5
C. 4
D. 10
Trong mặt phẳng Oxy cho điểm M(2;-6) và điểm I(1;4). Phép đối xứng tâm I biến M thành M’ thì tọa độ M’ là:
A. M’(0;14)
B. M’(14;0)
C. M’(-3/2;-2)
D. M’(-1/2;5)
Trong mặt phẳng Oxy cho điểm M(-5;9). Phép đối xứng tâm I(2; -6) biến M thành M’ thì tọa độ M’ là.
A. M'(9;-15)
B. M'(9;-3)
C.M'(9;-21)
D. M'(1;-3)
Trong mặt phằng tọa độ Oxy, cho điểm M'(4;2) Biết M’ là ảnh của M qua phép tịnh tiến theo vec tơ v → 1 ; 5 . Tìm tọa độ của điểm M.
A. (-3;-5)
B. (3;7)
C. (-5;7)
D. (-5;-3)
Trong mặt phẳng tọa độ Oxy, cho điểm M(3; -5), đường thẳng d có phương trình 3x + 2y – 6 = 0 và đường tròn (C) có phương trình x 2 + y 2 − 2 x + 4 y – 4 = 0 . Tìm ảnh của M, d, và (C) qua phép đối xứng qua trục Ox