Trong mặt phẳng Oxy cho điểm M(1;2) Phép tịnh tiến theo vecto u → = − 3 ; 4 biến điểm M thành điểm M' có tọa độ là
A. M ' − 2 ; 6
B. M ' 2 ; 5
C. M ' 2 ; − 6
D. M ' 4 ; − 2
Cho lăng trụ tam giác ABC.A′B′C′. Gọi M,N,P lần lượt là trung điểm các cạnh A′B′,BC,CC′. Mặt phẳng (MNP) chia khối lăng trụ thành hai phần, phần chưa điểm B có thể tích là V 1 . Gọi V là thể tích khối lăng trụ. Tính V 1 V .
A. 25 288
B. 29 144
C. 37 288
D. 19 144
Cho hình vuông ABCD có M là trung điểm của BC. Phép tịnh tiến the vecto v → biến M thành A thì v bằng
A. 1 2 A D → + D C →
B. A C → + A B →
C. 1 2 C B → - A B →
D. 1 2 C B → + A B →
Trong mặt phẳng với hệ tọa độ Oxyz, cho điểm M(2;5). Phép tịnh tiến theo véctơ v → 1 ; 2 biến điểm M thành điểm M'. Tọa độ điểm M' là :
A. M'(3;7)
B. M'(1;3)
C. M'(3;1)
D. M'(4;7)
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 18
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm AB, BC và điểm P là điểm đối xứng với B qua D. Mặt phẳng (MNP) chia tứ diện thành hai phần có tỉ số thể tích là
A. 1 2
B. 7 11
C. 7 18
D. 11 18
Trong mặt phẳng hệ trục tọa độ Oxy. Phép tịnh tiến theo v → = ( 1 ; 3 ) biến điểm M (-3;1) thành điểm M' có tọa độ là:
A. (4;2)
B. (-4;-2)
C. (2;-4)
D. (-2;4)
Cho tam giác ABC với trọng tâm G. Gọi A',B',C' lần lượt là trung điểm của các cạnh BC,AC,AB của tam giác ABC. Phép vị tự biến tam giác A'B'C' thành tam giác ABC là
A. Phép vị tự tâm G, tỉ số k=2
B. Phép vị tự tâm G, tỉ số k=-2
C. Phép vị tự tâm G, tỉ số k=-3
D. Phép vị tự tâm G, tỉ số k=3