Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm A(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là
A. 4x + 5y – 3z + 22 = 0.
B. 4x – 5y – 3z -12 =0
C. 2x + y – 3z – 14 = 0.
D. 4x + 5y – 3z – 22 = 0
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x–y+z -1= 0 và (Q):2x+y+1= 0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
A. x+2y+3z+7=0.
B. x-2y+3z+3=0.
C. x+2y-3z–5=0.
D. x–2y–3z-9=0.
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua hai điểm A 2 ; 1 ; 1 , B − 1 ; − 2 ; − 3 và vuông góc với mặt phẳng Q : x + y + z = 0.
A. x − y − z = 0.
B. x + y − 3 = 0.
C. x − y − 1 = 0.
D. x + y + z − 4 = 0.
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x+y+z-2=0, (Q): x+2y-z+3=0 và điểm A(1;0;4). Phương trình đường thẳng qua A và cùng song song với (P) và (Q) là:
A. d : x - 1 - 3 = y 2 = z - 4 1
B. d : x - 1 3 = y 1 = z - 4 1
C. d : x - 1 - 3 = y - 1 = z - 4 1
D. d : x - 1 - 3 = y 2 = z - 4 - 1
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : x + y + z - 7 = 0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là:
A. (Q): 5x+y-6z+7=0
B. (Q): 5x-y-6z+7=0
C. (Q): 5x+y-6z-7=0
D. (Q): 5x-y-6z+-=0
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 và d 2 : x - 5 - 3 = y + 1 2 = z - 2 1 và mặt phẳng (P) có phương trình x + 2 y + 3 z - 5 = 0 . Đường thẳng Δ vuông góc với (P) cắt d 1 và d 2 có phương trình là:
A. ∆ : x - 1 1 = y + 1 2 = z 3
B. ∆ : x - 2 1 = y - 3 2 = z - 1 3
C. ∆ : x - 3 1 = y - 3 2 = z + 2 3
C. ∆ : x - 1 3 = y + 1 2 = z 1
Trong không gian với hệ trục tọa độ Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng Q : x + y + 3 z = 0 , R : 2 x - y + z = 0 là
A. 4 x + 5 y - 3 z + 22 = 0 .
B. 4 x - 5 y - 3 z - 12 = 0 .
C. 2 x + y - 3 z - 14 = 0 .
D. 4 x + 5 y - 3 z - 22 = 0 .
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x - y + 2 z - 1 = 0 và 2 x - z + 3 = 0 . Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. -3y + 5z + 5 = 0
B. 2 y - 5 z + 5 = 0
C. -3y + 5z = 0
D. 2x - 5y + 5 = 0
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x − y + 2 z − 1 = 0 và 2 x − z + 3 = 0 . Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. − 3 y + 5 z = 0
B. 2 x − 5 y + 5 = 0
C. − 3 y + 5 z + 5 = 0
D. 2 y − 5 z + 5 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)