Chọn C
Phương trình đường thẳng qua hai điểm A, O có dạng
Gọi (P) là mặt phẳng cùng đi qua hai điểm A, O nên (P) : m (x-y)+nz=0, m²+n² > 0. Khi đó véctơ pháp tuyến của (P) có dạng
Vậy một véctơ pháp tuyến của một trong hai mặt phẳng đó là
Chọn C
Phương trình đường thẳng qua hai điểm A, O có dạng
Gọi (P) là mặt phẳng cùng đi qua hai điểm A, O nên (P) : m (x-y)+nz=0, m²+n² > 0. Khi đó véctơ pháp tuyến của (P) có dạng
Vậy một véctơ pháp tuyến của một trong hai mặt phẳng đó là
Trong không gian với hệ trục Oxyz, cho hai điểm M (0;-1;2), N (-1; 1; 3). Một mặt phẳng (P) đi qua M, N sao cho khoảng cách từ điểm K (0;0;2) đến mặt phẳng (P) đạt giá trị nhỏ nhất. Tìm tọa độ véctơ pháp tuyến của mặt phẳng (P).
A . n → = 1 ; - 1 ; 1
B . n → = 1 ; 1 ; - 1
C . n → = 2 ; - 1 ; 1
D . n → = 2 ; 1 ; - 1
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;3), B(-2,1,5). Véctơ nào dưới đây là véctơ pháp tuyến của mặt phẳng (OAB).
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(0;-1;2) và N(-1;1;3). Một mặt phẳng (P) đi qua M, N sao cho khoảng cách từ điểm K(0;0;2) đến mặt phẳng (P) đạt giá trị lớn nhất. Tìm tọa độ véctơ pháp tuyến n → của mặt phẳng
A. n → =(1;-1;1)
B. n → =(1;1;-1)
C. n → =(2;-1;1)
D. n → =(2;1;-1)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x - z + 1 = 0 . Tọa độ một véctơ pháp tuyến của mặt phẳng (P) là:
Trong không gian Oxyz, cho các điểmA(6;0;0), B(0;3;0) và mặt phẳng (P): x-2y+2z=0. Gọi d là đường thẳng đi qua M(2;2;0), song song với (P) và tổng khoảng cách từ A,B đến đường thẳng d đạt giá trị nhỏ nhất. Véctơ nào dưới đây là một véctơ chỉ phương của d?
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P) đi qua gốc toạ độ và nhận =(3;2;1) là véctơ pháp tuyến. Phương trình của mặt phẳng (P) là:
A. 3x+2y+z-14=0
B. 3x+2y+z=0
C. 3x+2y+z+2=0
D. x+2y+3z=0.
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 : x - 1 2 = y - 2 - 2 = z + 1 - 1 và
d 2 : x = t y = 0 z = - t . Mặt phẳng (P) qua d 1 và tạo với d 2 một góc 45 o và nhận véctơ n ⇀ ( 1 ; b ; c ) làm véc tơ pháp tuyến. xác định tích bc.
Trong không gian Oxyz, cho hai điểm A(1;1;0), B(2;-1;1). Một vectơ pháp tuyến n → của mặt phẳng (OAB) (Với O là gốc tọa độ) là
A. (-3;1;-1)
B. (1;-1;-3)
C. (1;-1;3)
D. (1;1;3)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A ( 1 ; - 1 ; 2 ) và B ( 2 ; 1 ; - 4 ) . Véctơ A B → có tọa độ là