Trong hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x-z+1=0. Véctơ pháp tuyến của mặt phẳng (P) có tọa độ là
A. (3;0;-1)
B. (3;-1;1)
C. (3;-1;0)
D. (-3;1;1)
Trong hệ trục tọa độ Oxyz cho mặt phẳng (P) có phương trình 3x - z + 1 = 0. Véctơ pháp tuyến của mặt phẳng (P) có tọa độ là
A. (3;0;1)
B. (3;-1;1)
C. (3;-1;0)
D. (-3;1;1)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình 2x + 3y - 4z + 7= 0. Tìm tọa độ véctơ pháp tuyến của (P).
A. (-2;3;-4)
B. (-2;-3;-4)
C. (2;3;-4)
D. (2;-3;-4)
Trong không gian với hệ tọa độ Oxy, cho mặt phẳng P : - 2 x + y - 3 z + 1 = 0 Một véctơ pháp tuyến của mặt phẳng (P) là:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(0;-1;2) và N(-1;1;3). Một mặt phẳng (P) đi qua M, N sao cho khoảng cách từ điểm K(0;0;2) đến mặt phẳng (P) đạt giá trị lớn nhất. Tìm tọa độ véctơ pháp tuyến n → của mặt phẳng
A. n → =(1;-1;1)
B. n → =(1;1;-1)
C. n → =(2;-1;1)
D. n → =(2;1;-1)
Trong không gian tọa độ Oxyz, mặt phẳng (P): -x + 2y - 3z + 4 = 0 có một véctơ pháp tuyến là:
A. (1;2;3)
B. (1;-2;3)
C. (1;2;-3)
D. (-1;-2;3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : z - 2 x + 3 = 0 . Một vectơ pháp tuyến của (P) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương
trình là -2x + 2y - z = 0. Mặt phẳng (P) có một vectơ pháp tuyến là:
A. (-2;-2;-3)
B. (4;-4;2)
C. (-4;4;2)
D. (0;0;-3)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;3), B(-2,1,5). Véctơ nào dưới đây là véctơ pháp tuyến của mặt phẳng (OAB).