Trong không gian với hệ tọa độ Oxyz, mặt phẳng(α) đi qua điểm M(1;2;-3) và nhận =(1;-2;3) làm véc-tơ pháp tuyến có phương trình là:
A. x-2y-3z+6=0
B. x-2y-3z-6=0
C. x-2y+3z-12=0
D. x-2y+3z+12=0.
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A (1;1;0), B (0;-1;2). Biết rằng có hai mặt phẳng cùng đi qua hai điểm A, O và cùng cách B một khoảng bằng √3. Véctơ nào trong các véctơ dưới đây là một véctơ pháp tuyến của một trong hai mặt phẳng đó.
Trong không gian với hệ tọa độ Oxyz, một vectơ pháp tuyến của mặt phẳng α : x-2y+3z+1=0. là:
A. (3;-2;1)
C. (1;-2;3)
C. (1;2;-3)
D. (1;-2;-3)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;3), B(-2,1,5). Véctơ nào dưới đây là véctơ pháp tuyến của mặt phẳng (OAB).
Trong không gian với hệ tọa độ, phương trình nào dưới đây là phương trình mặt phẳng đi qua điểm M(1;2;−3) và có một vectơ pháp tuyến n ⇀ =(1;-2;3)?
A. x-2y+3z+12=0
B. x-2y+3z-12=0
C. x-2y-3z-6=0
D. x-2y-3z+6=0
Trong không gian tọa độ Oxyz, cho mặt phẳng (P): x-2y+3z-7=0. Mặt phẳng (P) có vec tơ pháp tuyến là:
A. (-1;2;-3)
B. (1;2;-3)
C. (2;-3;1)
D. (2;3;-1)
Trong không gian với hệ trục tọa độ Oxyz, một vecto pháp tuyến của mặt phẳng α : x-2y+3z+1=0
A. (3;-2;1)
B. (1;-2;3)
C. (1;2;-3)
D. (1;-2;-3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x - z + 1 = 0 . Tọa độ một véctơ pháp tuyến của mặt phẳng (P) là:
Trong không gian Oxyz cho A (1;2;-1), B (3;1;-2), C (2;3;-3) và mặt phẳng (P): x-2y+2z-3=0. M (a;b;c) là điểm thuộc mặt phẳng (P) sao cho biểu thức MA²+MB²+MC² có giá trị nhỏ nhất. Xác định a+b+c.
A. -3
B. -2
C. 2
D. 3