Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Gọi A, B, C lần lượt là hình chiếu của M trên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng (ABC).
![]()
![]()
![]()
![]()
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M (-2;-1;3). Phương trình mặt phẳng đi qua các điểm lần lượt là hình chiếu của điểm M lên các trục tọa độ Ox, Oy, Oz là:
![]()
![]()
![]()
![]()
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3). Gọi A 1 A 2 A 3 lần lượt là hình chiếu vuông góc của A lên các mặt phẳng (Oyz), (Ozx), (Oxy). Phương trình của mặt phẳng ( A 1 A 2 A 3 ) là
A. x 1 + y 2 + z 3 = 0
B. x 3 + y 6 + z 9 = 1
C. x 1 + y 2 + z 3 = 1
D. x 2 + y 4 + z 6 = 1
Trong không gian với hệ tọa độ Oxyz, cho điểm H(a,b,c) với a,b,c>0 . Mặt phẳng (P) chứa điểm H và lần lượt cắt các trục Ox, Oy, Oz tại A, B, C thỏa mãn H là trực tâm của tam giác ABC. Phương trình của mặt phẳng (P) là


![]()
![]()
Trong không gian Oxyz, cho điểm M(1;-2;-1) có hình chiếu vuông góc trên các trục tọa độ lần lượt là A,B,C. Phương trình mặt phẳng (ABC) là
![]()
![]()
![]()
![]()
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.
A. 6x +3y-2z -6=0
B. x +2y+3z -14=0
C. x +2y+3z -11=0
D. x 1 + y 2 + z 3 = 3
Trong không gian với hệ trục tọa độ Oxyz, cho điểm G(1;2;3). Mặt phẳng α đi qua G cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng
![]()
![]()
![]()
![]()
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P : x a + y 2 a + z 3 a = 1 ( a > 0 ) cắt ba trục Ox, Oy, Oz lần lượt tại 3 điểm A, B, C. Tính diện tích V của khối tứ diện OABC.
![]()
![]()
![]()
![]()
Trong không gian tọa độ Oxyz, cho điểm A(5;4;3). Gọi ( α ) là mặt phẳng đi qua các hình chiếu của A lên các trục tọa độ. Phương trình của mặt phẳng ( α ) là:
A. 12 x + 15 y + 20 z - 10 = 0
B. 12 x + 15 y + 20 z + 60 = 0
C. x 5 + y 4 + z 3 = 1
D. x 5 + y 4 + z 3 - 60 = 0