Trong không gian với hệ tọa độ Oxyz, cho A(1;2;3), B(3;4;4). Tìm tất cả các giá trị của tham số m sao cho khoảng cách từ điểm A đến mặt phẳng 2x + y + mz - 1 = 0 bằng độ dài đoạn thẳng AB.
A. m = 2.
B. m = -2.
C. m = -3.
D. m = ± 2
Trong không gian với hệ trục tọa độ Oxyz, cho A 1 ; 2 ; 3 , B 3 ; 4 ; 4 . Tìm tất cả các giá trị của tham số m sao cho khoảng cách từ điểm A đến mặt phẳng 2 x + y + m z − 1 = 0 bằng độ dài đoạn thẳng AB.
A. m = 2
B. m = -2
C. m = -3
C. m = ± 2
Trong không gian với hệ trục tọa độ Oxyz, cho A(1;0;−1),B(2;1;0). Tìm tất cả các giá trị thực của tham số m sao cho khoảng cách từ điểm A đến mặt phẳng x + y + mz − 3 = 0 bằng độ dài đoạn thẳng AB.
A. m = ± 1
B. m = 1
C. m = ± 2
D. m = 2
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3) và đường thẳng (d): x - 2 2 = y + 2 - 1 = z - 3 1 . Gọi điểm B thuộc trục Ox sao cho AB vuông góc với đường thẳng (d). Khoảng cách từ B đến mặt phẳng ( α ): 2x+2y-z-1=0 là:
A. 2
B. 2 3
C. 1 3
D. 1
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d có phương trình x − 1 2 = y − 3 = z − 2 0 và mặt phẳng P : x + y = 0 . Tìm tọa độ điểm M trên d có hoành độ dương sao cho khoảng cách từ M đến (P) bằng 2 .
A. M 3 ; − 3 ; 2
B. M 7 ; − 9 ; 2
C. M 5 ; − 6 ; 2
D. M − 1 ; 3 ; 2
Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : x − 1 − 1 = y + 3 2 = z − 3 1 và mặt phẳng P : 2 x + y − 2 z + 9 = 0 . Tọa độ điểm I thuộc d sao cho khoảng cách từ I đến mặt phẳng (P) bằng 2 có dạng I(a;b;c). Giá trị của a + b + c bằng
A. -3 hoặc 9
B. 1 hoặc 2
C. 3 hoặc -9
D. -1 hoặc 2
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d có phương trình x − 1 1 = y + 1 2 = z − 2 − 1 và mặt phẳng P : x + 2 y − 2 z + 4 = 0 . Tìm tọa độ điểm M trên d có tung độ dương sao cho khoảng cách từ M đến (P) bằng 2.
A. M 3 ; 3 ; 0
B. M 2 ; 1 ; 1
C. M 0 ; - 3 ; 3
D. M 1 ; - 1 ; 2
Trong không gian với hệ trục tọa độ Oxyz, tìm tất cả giá trị thực của tham số m để đường thẳng d : x - 2 - 2 = y - 1 1 = z 1 song song với mặt phẳng P : 2 x + 1 - 2 m y + m 2 z + 1 = 0 .
A. m ∈ - 1 ; 3
B. m=3
C. Không có giá trị nào của m
D. m=-1
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;1;2), M(3;0;0) và mặt phẳng (P):x+y+z-3=0. Đường thẳng ∆ đi qua điểm M, nằm trong mặt phẳng (P) sao cho khoảng cách từ điểm A đến đường thẳng ∆ là nhỏ nhất. Gọi u → = a , b , c là vectơ chỉ phương của ∆ với a, b, c là các số nguyên có ước chung lớn nhất bằng 1. Tính giá trị T=a+b+c.
A. T = -1
B. T = 1.
C. T = 0.
D. T = 2.