Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 v à d 2 lần lượt có phương trình là x − 1 1 = y − 2 3 = z − 3 − 1 , x − 2 − 2 = y + 2 1 = z − 1 3 . Tìm tọa độ giao điểm M của d 1 và d.
A. M = (0;–1;4)
B. M = (0;1;4)
C. M = (–3;2;0)
D. M = (3;0;5)
Trong không gian với hệ tọa độ O x y z , cho hai đường thẳng △ 1 : x + 1 2 = y + 2 1 = z − 1 1 và △ 2 : x + 2 − 4 = y − 1 1 = z + 2 − 1 . Đường thẳng chứa đoạn vuông góc chung của △ 1 , △ 2 đi qua điểm nào sau đây?
A. Q 3 ; 1 ; − 4 .
B. P 2 ; 0 ; 1 .
C. M 0 ; − 2 ; − 5 .
D. N 1 ; − 1 ; − 4 .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A 1 ; 1 ; - 2 Đường thẳng đi qua A, song song với (P) và vuông góc với d có phương trình là
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 3
D. x - 1 2 = y - 1 5 = z + 2 - 3
Trong không gian với hệ trục tọa độ Oxyz, cho ba đường thẳng d 1 : x - 3 2 = y + 1 1 = z - 2 - 2 , d 2 : x + 1 3 = y - 2 = z + 4 - 1 và d 3 : x + 3 4 = y - 2 - 1 = z 6 . Đường thẳng d 3 song song , cắt d 1 và d 2 có phương trình là:
A. △ : x - 3 4 = y + 1 1 = z - 2 6
B. △ : x - 3 - 4 = y + 1 1 = z - 2 - 6
C. △ : x + 1 4 = y - 1 = z - 4 6
D. △ : x - 1 4 = y - 1 = z + 4 6
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y + 1 ) 2 + z 2 = 11 và hai đường thẳng d 1 : x - 5 1 = y + 1 1 = z - 1 2 , d 2 : x + 1 1 = y 2 = z 1 . Phương trình tất cả các mặt phẳng tiếp xúc với mặt cầu ( S ) đồng thời song song với hai đường thẳng d 1 , d 2
A. 3 x - y - z - 7 = 0
B. 3 x - y - z - 7 = 0 v à 3 x - y - z - 15 = 0
C. 3 x - y - z + 7 = 0
D. 3 x - y - z - 15 = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ đi qua điểm M 1 ; 1 ; − 2 song song với mặt phẳng P : x − y − z − 1 = 0 và cắt đường
d : x + 1 − 2 = y − 1 1 = z − 1 3 , thẳng phương trình của ∆ là:
A. x + 1 2 = y + 1 5 = z − 2 − 3
B. x − 1 2 = y − 1 5 = z + 2 − 3
C. x + 5 − 2 = y + 3 1 = z − 1
D. x + 1 − 2 = y + 1 5 = z − 2 3
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d: x 1 = y - 2 = z + 1 1 và d'= x - 1 - 2 ) = y - 2 4 = z 2 . Viết phương trình mặt phẳng (Q) chứa hai đường thẳng d và d’
A. Không tồn tại (Q)
B. (Q): y-2z-2= 0
C. (Q): x-y-2= 0
D. (Q):-2y+4z+1= 0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A(1; 1; -2). Viết phương trình đường thẳng đi qua A, song song với (P) và vuông góc với d
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 - 3
D. x - 1 2 = y - 1 5 = z + 2 - 3
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 , d 2 lần lượt có phương trình là x - 1 1 = y - 2 3 = z - 3 - 1 , x - 2 - 2 = y + 2 1 = z - 1 3 . Tìm tọa độ giao điểm M của d 1 , d 2 .
A. M = (0;–1;4)
B. M = (0;–1;4)
C. M = (0;–1;4)
D. M = (3;0;5)