mặt phẳng α chứa trục Oz nên phương trình có dạng
Lại có α đi qua điểm P(2;-3;5) nên
Vậy phương trình mặt phẳng α : 3x + 2y = 0
Chọn C.
mặt phẳng α chứa trục Oz nên phương trình có dạng
Lại có α đi qua điểm P(2;-3;5) nên
Vậy phương trình mặt phẳng α : 3x + 2y = 0
Chọn C.
Trong không gian Oxyz, cho mặt phẳng α : 2 x + 3 y - 2 z + 12 = 0 . Gọi A, B, C lần lượt là giao điểm của α với 3 trục tọa độ, đường thẳng d đi qua tâm đường tròn ngoại tiếp tam giác ABC và vuông góc với α có phương trình là
A. x + 3 2 = y + 2 3 = z - 3 - 2
B. x + 3 2 = y - 2 - 3 = z - 3 2
C. x + 3 2 = y - 2 3 = z - 3 - 2
D. x - 3 2 = y - 2 3 = z + 3 - 2
Trong không gian với hệ trục tọa độ O x y z , cho điểm I 1 ; − 1 ; 1 và mặt phẳng α : 2 x + y − 2 z + 10 = 0 . Mặt cầu S tâm I tiếp xúc α có phương trình là:
A. S : x − 1 2 + y + 1 2 + z − 1 2 = 1
B. S : x − 1 2 + y + 1 2 + z − 1 2 = 9
C. S : x + 1 2 + y − 1 2 + z + 1 2 = 3
D. S : x + 1 2 + y − 1 2 + z + 1 2 = 1
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng α : 2 x - y - 3 z + 10 = 0 và điểm M 2 ; - 2 ; 3 . Mặt phẳng P đi qua M và song song với mặt phẳng α có phương trình là:
A. P : 2 x - y - 3 z + 3 = 0
B. P : 2 x - y - 3 z - 3 = 0
C. P : 2 x - 2 y - 3 z + 3 = 0
D. P : 2 x - 2 y + 3 z - 15 = 0
Trong không gian với hệ tọa độ Oxyz cho điểm M 1 ; 0 ; 6 và mặt phẳng α có phương trình là x + 2 y + 2 z − 1 = 0 . Viết phương trình mặt phẳng β đi qua M và song song với α
A. β : x + 2 y + 2 z + 13 = 0.
B. β : x + 2 y + 2 z − 15 = 0.
C. β : x + 2 y + 2 z − 13 = 0.
D. β : x + 2 y + 2 z + 15 = 0.
Trong không gian với hệ tọa độ Oxyz tìm trên trục Oz điểm M cách đều điểm A 2 ; 3 ; 4 và mặt phẳng α : 2 x + 3 y + z - 17 = 0
A. M(0;0;0)
B. M(0;0;1)
C. M(0;0;3)
D. M(0;0;2)
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng α : 4 x - 3 y - 7 z + 3 = 0 và điểm I(1;-1;2). Phương trình mặt phẳng đối xứng với α qua I là
A. β : 4x - 3y - 7z - 3 = 0
B. β : 4x - 3y - 7z + 11 = 0
C. β : 4x - 3y - 7z - 11 = 0
D. β : 4x - 3y - 7z + 5 = 0
Trong không gian với hệ trục tọa độ Oxyz, phương trình tham số của đường thẳng d đi qua điểm A(1;2;3) và vuông góc với mặt phẳng (α):4x+3y-7z+1=0 là:
A. d : x = 4 + t y = 3 + 2 t z = - 7 + 3 t
B. d : x = 1 + 8 t y = - 2 + 6 t z = 3 - 14 t
C. d : x = 1 + 3 t y = 2 - 4 t z = 3 - 7 t
D. d : x = 1 + 4 t y = 2 + 3 t z = 3 - 7 t
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2;-1), B(0;4;0) và mặt phẳng (P) có phương trình 2x-y-2z+1=0. Gọi (Q) là mặt phẳng đi qua hai điểm A, B và tạo với mặt phẳng (P) góc nhỏ nhất bằng α . Tính cos α .
A. cos α = 1 9
B. cos α = 2 9
C. cos α = 1 6
D. cos α = 3 3
Trong không gian với hệ tọa độ Oxyz, gọi ∆ là đường thẳng đi qua điểm M 2 ; 0 ; − 3 và vuông góc với mặt phẳng α : 2 x − 3 y + 5 z − 4 = 0. Phương trình chính tắc của ∆ là:
A. x + 2 1 = y − 3 = z − 3 5
B. x + 2 2 = y − 3 = z − 3 5
C. x − 2 2 = y 3 = z + 3 5
D. x − 2 2 = y − 3 = z + 3 5