Trong không gian Oxyz cho tứ diện ABCD có thể tích V = 5 , các đỉnh A = 2 ; 1 ; − 1 , B = 3 ; 0 ; 1 , C = 2 ; − 1 ; 3 , đỉnh thứ tư D nằm trên trục Oy và có tung độ dương. Tìm tọa độ của D.
A. D = 0 ; 8 ; 0
B. D = 0 ; 7 ; 0
C. D = 0 ; 7 4 ; 0
D. D = 0 ; 17 4 ; 0
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;0;-2), B(3;-1;-4), C(-2;2;0). Điểm D trong mặt phẳng (Oyz) có tung độ dương sao cho thể tích của khối tứ diện ABCD bằng 2 và khoảng cách từ D đến mặt phẳng (Oxy) bằng 1 có thể là:
A. D(0;-3;-1)
B. D(0;1;-1)
C. D(0;2;-1)
D. D(0;3;-1)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;0;-2), B(3;-2;-4), C(-2;2;0). Điểm D trong mặt phẳng (Oyz) có tung độ dương và cao độ âm sao cho thể tích của khối tứ diện ABCD bằng 2 và khoảng cách từ D đến mặt phẳng (Oxy) bằng 1 có thể là:
A. D 0 ; − 3 ; − 1
B. D 0 ; 1 ; − 1
C. D 0 ; 2 ; − 1
D. D 0 ; 3 ; − 1
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; 0; 2), B(3; 0; 5), C(1; 1; 0). Tọa độ của điểm D sao cho ABCD là hình bình hành là
A. D(4; 1; 3)
B. D(-4; -1; -3)
C. D(2; 1; -3)
D. D(-2; 1; -3)
Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD có điểm A(1;1;1) , B(2;0;2), C(-1; -1; 0), D(0;3;4) Trên các cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' thỏa: A B A B ' + A C A C ' + A D A D ' = 4 Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất?
A. 16x+40y+44z-39=0
B. 16x+40y-44z+39=0
C. 16x-40y-44z+39=0
D. 16x-40y-44z-39=0
Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD với A(3;5;-1),B(0;-1;8),C(-1;-7;3),D(1;0;2) và điểm M(1;1;5). Mặt phẳng (P):ax+by+cz-14=0 qua hai điểm D,M cắt cạnh AC và (P) chia khối tứ diện ABCD thành hai phần có thể tích bằng nhau. Giá trị của biểu thức a+b+c bằng
A. 10
B. 16
C. 8
D. -36
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;0;0),B(0;1;1),C(1;0;1). Xét điểm D thuộc mặt phẳng Oxy sao cho tứ diện ABCD là một tứ diện đều. Kí hiệu D ( x 0 ; y 0 ; z 0 ) là tọa độ của điểm D. Tổng x 0 + y 0 bằng
A. 0
B. 1
C. 2
D. 3
Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A ( a ; 1 ; − 2 ) , B ( 1 ; 0 ; − 1 ) , C ( 2 ; − 1 ; 3 ) , D ( 1 ; 0 ; 2 ) . Biết thể tích của tứ diện ABCD bằng 1 và điểm A có hoành dương. Khi đó giá trị a bằng
A. a = 1
B. a = 3
C. a = 2
D. = 4
Trong không gian với hệ tọa độ Oxyz, xét tứ diện ABCD có các cặp cạnh đối diện bằng nhau và điểm D khác phía với O so với mặt phẳng (ABC); đồng thời A, B, C lần lượt là giao điểm của các trục Ox, Oy, Oz và mặt phẳng α : x m + y m + 2 + z m - 5 = 1 (với m ≠ - 2 , m ≠ 0 , m ≠ 5 ). Tìm khoảng cách ngắn nhất từ tâm mặt cầu ngoại tiếp I của tứ diện ABCD đến O.
A. 20
B. 1 4
C. 36
D. 26 2