Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;0;-2), B(3;-1;-4), C(-2;2;0). Điểm D trong mặt phẳng (Oyz) có tung độ dương sao cho thể tích của khối tứ diện ABCD bằng 2 và khoảng cách từ D đến mặt phẳng (Oxy) bằng 1 có thể là:
A. D(0;-3;-1)
B. D(0;1;-1)
C. D(0;2;-1)
D. D(0;3;-1)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;0;-2), B(3;-2;-4), C(-2;2;0). Điểm D trong mặt phẳng (Oyz) có tung độ dương và cao độ âm sao cho thể tích của khối tứ diện ABCD bằng 2 và khoảng cách từ D đến mặt phẳng (Oxy) bằng 1 có thể là:
A. D 0 ; − 3 ; − 1
B. D 0 ; 1 ; − 1
C. D 0 ; 2 ; − 1
D. D 0 ; 3 ; − 1
Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD với A(3;5;-1),B(0;-1;8),C(-1;-7;3),D(1;0;2) và điểm M(1;1;5). Mặt phẳng (P):ax+by+cz-14=0 qua hai điểm D,M cắt cạnh AC và (P) chia khối tứ diện ABCD thành hai phần có thể tích bằng nhau. Giá trị của biểu thức a+b+c bằng
A. 10
B. 16
C. 8
D. -36
Trong không gian với hệ trục tọa độ Oxyz cho A (1; 2; ‒1), B (‒2; 1; 0). Điểm M a ; b ; c thuộc mặt phẳng P : x - 2 y + z + 4 = 0 sao cho M A = M B = 11 2 . Khi đó giá trị của a bằng?
A. a = ± 1 2
B. a = 11 4
C. a = 1 2
D. a = - 1 2
Trong không gian Oxyz, cho các điểm A(2 ;1 ;0),B(0 ;4 ;0),C(0,2,-1) Biết đường thẳng ∆ vuông góc với mặt phẳng (ABC) và cắt đường thẳng d : x - 1 2 = y + 1 1 = z - 2 3 tại điểm D(a ;b ;c) thỏa mãn a > 0 và tứ diện ABCD có thể tích bằng 17/6. Tổng a+b+c bằng
A. 5
B. 4
C. 7
D. 6
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) , trong đó a > 0 , b > 0 , c > 0 và 3 a + 1 b + 3 c = 5 . Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S) có phương trình là ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 304 25 , khi đó thể tích của khối tứ diện OABC nằm trong khoảng nào?
A . ( 0 ; 1 2 ) .
B. (0;1).
C. (1;3).
D. (4;5).
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A 0 ; − 1 ; − 1 , B − 1 ; − 3 ; 1 . Giả sử C,D là 2 điểm di động thuộc mặt phẳng P = 2 x + y − 2 z − 1 = 0 sao cho CD = 4 và A,C,D thẳng hàng. Gọi S 1 , S 2 lần lượt là diện tích lớn nhất và nhỏ nhất của tam giác BCD. Khi đó tổng S 1 + S 2 có giá trị bằng bao nhiêu?
A. 34 3
B. 17 3
C. 11 3
D. 37 3
Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD có điểm A(1;1;1) , B(2;0;2), C(-1; -1; 0), D(0;3;4) Trên các cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' thỏa: A B A B ' + A C A C ' + A D A D ' = 4 Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất?
A. 16x+40y+44z-39=0
B. 16x+40y-44z+39=0
C. 16x-40y-44z+39=0
D. 16x-40y-44z-39=0
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;1;0), B(2;2;2), C(-2;3;1) và đường thẳng d : x - 1 2 = y + 2 - 1 = z - 3 2 . Tìm điểm M thuộc d để thể tích V của tứ diện MABC bằng 3.
A. M 1 - 15 2 ; 9 4 ; - 11 2 , M 2 - 3 2 ; - 3 4 ; 1 2
B. M 1 - 3 5 ; - 3 4 ; 1 2 , M 2 - 15 2 ; 9 4 ; 11 2
C. M 1 3 2 ; - 3 4 ; 1 2 , M 2 15 2 ; 9 4 ; 11 2
D. M 1 3 5 ; - 3 4 ; 1 2 , M 2 15 2 ; 9 4 ; 11 2