Đáp án là A.
+ Mặt phẳng chứa Ox có dạng By+Cz=0
+ Do mặt cầu tiếp xúc với mặt phẳng nên 2 B - C B 2 + C 2 = 1 ⇔ B = 0 B = 4 , C = 3
Vậy mặt phẳng cần tìm 4y +3z=0
Đáp án là A.
+ Mặt phẳng chứa Ox có dạng By+Cz=0
+ Do mặt cầu tiếp xúc với mặt phẳng nên 2 B - C B 2 + C 2 = 1 ⇔ B = 0 B = 4 , C = 3
Vậy mặt phẳng cần tìm 4y +3z=0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
(P): x-2y+2z=0. (Q): x-2y+3z-5=0. Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
![]()
![]()
![]()
![]()
Trong không gian với hệ toạ độ Oxyz, (α) là mặt phẳng đi qua điểm A ( 2 ; - 1 ; 5 ) và vuông góc với hai mặt phẳng ( P ) : 3 x – 2 y + z – 1 = 0 v à ( Q ) : 5 x – 4 y + 3 z + 10 = 0 . Phương trình mặt phẳng (α) là:
A. x + 2y + z- 5 = 0.
B. 2x – 4y – 2z – 9 = 0.
C. x - 2y + z -1 = 0
D. x- 2y- z + 1 = 0
Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S) có phương trình x - 1 2 + y - 2 2 + z + 1 2 = 1 . Một phương trình mặt phẳng (Q) chứa trục hoành và tiếp xúc với mặt cầu (S) là:
A. 4y + 3z = 0
B. 4y + 3z + 1 = 0
C. 4y - 3z + 1 = 0
D. 4y - 3z = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; -1; 0) và mặt phẳng (P): x - 2y - 3z + 10 = 0. Phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) là:
A. x - 2y + 3z + 4 = 0
B. -x + 2y + 3z + 4 = 0
C. x - 2y - 3z + 4 = 0
D. x + 2y - 3z = 0.
Trong không gian Oxyz, viết phương trình mặt phẳng (P) song song với mặt phẳng ( Q ) : x + 2 y – 2 z + 1 = 0 và tiếp xúc với mặt cầu ( S ) : x 2 + y 2 + z 2 + 2 x – 4 y – 2 z – 3 = 0
A. x + 2 y – 2 z + 6 = 0 ; x + 2 y – 2 z – 12 = 0
B. x + 2 y – 2 z + 8 = 0 ; x + 2 y – 2 z – 10 = 0
C. x + 2 y – 2 z + 10 = 0 ; x + 2 y – 2 z – 8 = 0 .
D. x + 2 y – 2 z + 12 = 0 ; x + 2 y – 2 z – 6 = 0
Trong không gian Oxyz, viết phương trình mặt phẳng (P) song song với mặt phẳng ( Q ) : x + 2 y - 2 z + 1 = 0 và tiếp xúc với mặt cầu ( S ) : x 2 + y 2 + z 2 + 2 x – 4 y – 2 z – 3 = 0
A. x + 2 y – 2 z + 12 = 0 v à x + 2 y – 2 z - 6 = 0
B. x + 2 y – 2 z – 12 = 0 v à x + 2 y – 2 z + 6 = 0
C. x + 2 y – 2 z + 10 = 0 v à x + 2 y – 2 z - 8 = 0
D. x + 2 y – 2 z – 10 = 0 v à x + 2 y – 2 z + 8 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 - 2 x + 6 y - 4 z - 2 = 0 mặt phẳng ( α ) : x + 4 y + z - 11 = 0 . Gọi (P) là mặt phẳng vuông góc với ( α ) , (P) song song với giá của vecto v → = ( 1 ; 6 ; 2 ) và (P) tiếp xúc với (S). Lập phương trình mặt phẳng ( P ).
A. 2x -y +2z -2 = 0 và x - 2y + z -21 = 0
B. x- 2y+ 2z + 3 = 0 và x - 2y + z -21 = 0
C. 2x -y +2z + 3 = 0 và 2x - y + 2z -21 = 0
D. 2x -y +2z + 5 = 0 và x - 2y + 2z -2 = 0
Trong hệ trục tọa độ Oxyz, cho phương trình mặt phẳng (P): 2x+4y-3z+1=0. Vecto pháp tuyến của (P) là:
A. (2;4;3)
B. (2;4;-3)
C. (2;-4;-3)
D. (-3;4;2)
Trong không gian với hệ trục tọa độ Oxyz cho mặt cầu S : x 2 + y 2 + z 2 - 2 x + 6 y - 4 z - 2 = 0 ,mặt phẳng ( α ) : x + 4 y + z - 11 = 0 .Gọi (P) là mặt phẳng vuông góc với α , (P) song song với giá của véctơ v → = 1 ; 6 ; 2 và (P) tiếp xúc với (S). Lập phương trình mặt phẳng (P)
A. 2x - y + 2z - 2 = 0 và x - 2y + z - 21 = 0.
B. x - 2y + 2z + 3 = 0 và x - 2y + z - 21 = 0.
C. 2x - y + 2z + 3 = 0 và 2x - y + 2z - 21 = 0.
D. 2x - y + 2z + 5 = 0 và 2x - y + 2z - 2 = 0.