Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Trong không gian với hệ tọa độ Oxyz, cho hình lăng trụ đứng ABC A'B'C' có A x 0 ; 0 ; 0 , B − x 0 ; 0 ; 0 , C 0 ; 1 ; 0  và B ' − x 0 ; 0 ; y 0 , trong đó x 0 ; y 0  là các số thực dương và thỏa mãn x 0 + y 0 = 4 . Khi khoảng cách giữa hai đường thẳng AC' và B'C lớn nhất thì mặt cầu ngoại tiếp hình lăng trụ có bán kính R bằng bao nhiêu?

A. R = 17

B. R = 29 4

C. R = 17

D. R = 29 2

Cao Minh Tâm
13 tháng 9 2018 lúc 10:35

Đáp án D.

Gọi O là trung điểm của AB, suy ra  O 0 ; 0 ; 0   .

Ta có A B → = − 2 x 0 ; 0 ; 0 , O C → = 0 ; 1 ; 0 ⇒ A B → . O C → = 0 ⇒ A B ⊥ O C .

Gắn hệ trục tọa độ Oxyz như hình vẽ bên. Với A x 0 ; 0 ; 0 , B − x 0 ; 0 ; 0 , C 0 ; 1 ; 0 , B ' − x 0 ; 0 ; 4 − x 0 , A ' x 0 ; 0 ; 4 − x 0 , C ' 0 ; 1 ; 4 − x 0  do   x 0 + y 0 = 4 và 0 < x 0 , y 0 < 4 .

 Có  A C ' → = − x 0 ; 1 ; 4 − x 0 , B ' C → = x 0 ; 1 ; x 0 − 4 ⇒ A C ' → , B ' C → = 2 x 0 − 8 ; 0 ; − 2 x 0

A C → = − x 0 ; 1 ; 0 ⇒ A C ' → , B ' C → . A C → = − x 0 2 x 0 − 8 = − 2 x 0 x 0 − 4

⇒ d A C ' ; B ' C = A C ' → , B ' C → . A C → A C ' → , B ' C → = 2 x 0 x 0 − 4 4 4 − x 0 2 + 4 x 0 2 = x 0 4 − x 0 4 − x 0 2 + x 0 2

 do x 0 ∈ 0 ; 4 .

Với  0 < x 0 < 4   , ta có 4 − x 0 2 + x 0 2 ≥ A M − G M 2 4 − x 0 2 x 0 2 = 2 x 0 4 − x 0 .

Như vậy d A C ' ; B ' C = x 0 4 − x 0 4 − x 0 2 + x 0 2 ≤ x 0 4 − x 0 2 x 0 4 − x 0 = 1 2 .

Dấu “=” xảy ra khi  x 0 = 4 − x 0 ⇔ x 0 = 2 = y 0   .

Khi đó A 2 ; 0 ; 0 , B − 2 ; 0 ; 0 , C 0 ; 1 ; 0 , B ' − 2 ; 0 ; 2 . Giả sử phương trình mặt cầu ngoại tiếp lăng trụ A B C . A ' B ' C '  là .

Ta có hệ phương trình sau:

  2 2 + 0 2 + 0 2 − 2 a .2 − 2 b .0 − 2 c .0 + d = 0 − 2 2 + 0 2 + 0 2 − 2 a − 2 − 2 b .0 − 2 c .0 + d = 0 0 2 + 1 2 + 0 2 − 2 a .0 − 2 b .1 − 2 c .0 + d = 0 − 2 2 + 0 2 + 2 2 − 2 a − 2 − 2 b .0 − 2 c .2 + d = 0 ⇔ 4 a − d = 4 4 a + d = − 4 2 b − d = 1 4 a − 4 c + d = − 8 ⇔ a = 0 b = − 3 2 c = 1 d = − 4

Vậy mặt cầu (S) có tâm I 0 ; − 3 2 ; 1  và bán kính 

R = a 2 + b 2 + c 2 − d = 29 2


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết