Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Trong không gian với hệ tọa độ Oxyz, cho hình lăng trụ đứng A B C . A ' B ' C '  có A x 0 ; 0 ; 0 , B − x 0 ; 0 ; 0 , C 0 ; 1 ; 0  và B ' − x 0 ; 0 ; y 0 , trong đó x 0 ; y 0  là các số thực dương và thỏa mãn x 0 + y 0 = 4 . Khi khoảng cách giữa hai đường thẳng AC' và B'C lớn nhất thì bán kính R của mặt cầu ngoại tiếp hình lăng trụ A B C . A ' B ' C '  bằng bao nhiêu?

A. R = 3 6 2

B. R = 29 4

C. R = 41 4

D. R = 29 2

Cao Minh Tâm
12 tháng 7 2019 lúc 9:02

Đáp án D.

Ta tìm được A ' x 0 ; 0 ; y 0 , C ' 0 ; 1 ; y 0 .

Gọi (P) là mặt phẳng chứa AC' và song song với B'C thì P : y 0 x + x 0 z − x 0 y 0 = 0 .

 

Do đó

d A C ' , B ' C = d C , P = x 0 y 0 x 0 2 + y 0 2 ≤ 2 2 . x 0 y 0 ≤ 2 4 x 0 + y 0 = 2

Dấu bằng xảy ra khi x 0 = y 0 = 2 .

Tam giác ABC có A B = 4 ; A C = B C = 5  nên có bán kính đường tròn ngoại tiếp là r = 5 2 . Ta lại có B B ' = 2  nên mặt cầu ngoại tiếp hình lăng trụ A B C . A ' B ' C '  có bán kính R = r 2 + 1 4 B B ' 2 = 29 2 .


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết