Trong không gian với hệ tọa độ Oxyz, cho hình lăng trụ đứng A B C . A ' B ' C ' có A x 0 ; 0 ; 0 , B − x 0 ; 0 ; 0 , C 0 ; 1 ; 0 và B ' − x 0 ; 0 ; y 0 , trong đó x 0 ; y 0 là các số thực dương và thỏa mãn x 0 + y 0 = 4 . Khi khoảng cách giữa hai đường thẳng AC' và B'C lớn nhất thì bán kính R của mặt cầu ngoại tiếp hình lăng trụ A B C . A ' B ' C ' bằng bao nhiêu?
A. R = 3 6 2
B. R = 29 4
C. R = 41 4
D. R = 29 2
Đáp án D.
Ta tìm được A ' x 0 ; 0 ; y 0 , C ' 0 ; 1 ; y 0 .
Gọi (P) là mặt phẳng chứa AC' và song song với B'C thì P : y 0 x + x 0 z − x 0 y 0 = 0 .
Do đó
d A C ' , B ' C = d C , P = x 0 y 0 x 0 2 + y 0 2 ≤ 2 2 . x 0 y 0 ≤ 2 4 x 0 + y 0 = 2
Dấu bằng xảy ra khi x 0 = y 0 = 2 .
Tam giác ABC có A B = 4 ; A C = B C = 5 nên có bán kính đường tròn ngoại tiếp là r = 5 2 . Ta lại có B B ' = 2 nên mặt cầu ngoại tiếp hình lăng trụ A B C . A ' B ' C ' có bán kính R = r 2 + 1 4 B B ' 2 = 29 2 .