Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d : x - 1 1 = y - 2 1 = z - 1 2 , A(2;1;4). Gọi điểm H(a;b;c) là điểm thuộc d sao cho AH có độ dài nhỏ nhất. Tính giá trị T = a 2 + b 2 + c 2 .
A. T = 8
B. T = 62
C. T = 13
D. T = 5
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y - 2 1 = z - 1 2 , A(2 ;1 ;4). Gọi H(a ;b ;c) là điểm thuộc d sao cho AH có độ dài nhỏ nhất. Tính T = a 3 + b 3 + c 3
A. T=13
B. T = 5
C. T=8
D. T=62
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A - 2 ; 1 ; 0 , B 4 ; 4 ; - 3 , C 2 ; 3 ; - 2 và đường thẳng d : x - 1 1 = y - 1 - 2 = z - 1 - 1 . Gọi α là mặt phẳng chứa d sao cho A, B, C ở cùng phía đối với mặt phẳng α . Gọi d 1 , d 2 , d 3 lần lượt là khoảng cách từ A, B, C đến α . Tìm giá trị lớn nhất của T = d 1 + 2 d 2 + 3 d 3 .
A. T m a x = 2 21
B. T m a x = 6 14
C. T m a x = 14 + 203 3 + 3 21
D. T m a x = 203
Trong không gian hệ tọa độ Oxyz cho điểm A(1;2;-1); B(7;-2;3) và đường thẳng d: d : x + 1 3 = y - 2 - 2 = z - 2 2 Điểm I(a,b,c) trên d sao cho AI+BI nhỏ nhất. Tính giá trị a+b+c
A.4
B.3
C.6
D. 8
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng x = 1 + t y = 2 − t z = t , d ' : x = 2 t ' y = 1 + t ' z = 2 + t ' . Đường thẳng ∆ cắt d , d ' lần lượt tại các điểm A, B thỏa mãn độ dài đoạn thẳng AB nhỏ nhất. Phương trình đường thẳng ∆ là
A. x − 1 − 2 = y − 2 1 = z 3 .
B. x − 4 − 2 = y − 1 = z − 2 3 .
C. x 2 = y − 3 − 1 = z + 1 − 3 .
D. x − 2 − 2 = y − 1 1 = z − 1 3 .
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;1;2), M(3;0;0) và mặt phẳng (P):x+y+z-3=0. Đường thẳng ∆ đi qua điểm M, nằm trong mặt phẳng (P) sao cho khoảng cách từ điểm A đến đường thẳng ∆ là nhỏ nhất. Gọi u → = a , b , c là vectơ chỉ phương của ∆ với a, b, c là các số nguyên có ước chung lớn nhất bằng 1. Tính giá trị T=a+b+c.
A. T = -1
B. T = 1.
C. T = 0.
D. T = 2.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 - 2 = y - 1 = z - 2 1 và hai điểm A(-1;3;1),B(0;2;-1). Tìm tọa độ điểm C thuộc d sao cho diện tích của tam giác ABC nhỏ nhất.
A . C ( - 1 ; 0 ; 2 )
B . C ( 1 ; 1 ; 1 )
C . C ( - 3 ; - 1 ; 3 )
D . C ( - 5 ; - 2 ; 4 )
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ x = - 3 + 2 t y = - 1 + t z = 3 + t và mặt phẳng có phương trình (a): x + 2y - z + 5 = 0 . Gọi A là giao điểm của và (a). Tìm điểm B ∈ ∆ ; C ∈ a sao cho B A = 2 B C = 6 và A B C ^ = 60 o .
A. B ( -3;-1;3 ); C - 5 2 ; 0 ; 5 2 hoặc B ( -1;0;4 ); C 1 2 ; 0 ; 11 2
B. B ( -3;-1;3 ); C - 5 2 ; 0 ; 5 2 hoặc B ( 1;1;5 ); C 1 2 ; 0 ; 11 2
C. B ( -3;-1;3 ); C - 5 2 ; 0 ; 5 2 hoặc B ( -7;-3;1 ); C 1 2 ; 0 ; 11 2
D. B ( -3;-1;3 ); C - 5 2 ; 0 ; 5 2 hoặc B ( 3;2;6 ); C 1 2 ; 0 ; 11 2
Trong không gian với hệ tọa độ Oxyz, cho điểm M(a;b;c), (a > 0) thuộc đường thẳng d : x − 3 = y + 2 − 1 = z − 1 2 . Hình chiếu song song của điểm M trên mặt phẳng P : x + 5 y − 2 = 0 theo phương của đường thẳng Δ: x = 3 − t y = 1 + 2 t z = − 3 t là điểm M’ sao cho MM ' = 14 . Tính giá trị của biểu thức T = a + b + c là:
A. 0
B. 1
C. 2
D. 3