Cho ba tia Ox, Oy, Oz đôi một vuông góc với nhau. Gọi C là điểm cố định trên Oz, đặt OC=1, các điểm A,B thay đổi trên Ox, Oy sao cho OA+OB=OC. Tìm giá trị bé nhất của bán kính mặt cầu ngoại tiếp tứ diện OABC
Cho ba tia Ox, Oy, Oz đôi một vuông góc với nhau. Gọi C là điểm cố định trên Oz, đặt OC=1 các điểm A, B thay đổi trên Ox, Oy sao cho OA+OB=OC. Giá trị bé nhất của bán kính mặt cầu ngoại tiếp tứ diện OABC là
A. 6 3
B. 6
C. 6 4
D. 6 2
Trong không gian với hệ tọa độ Oxyz, cho điểm M(4;1;9). Gọi (P) là mặt phẳng đi qua M và cắt 3 tia Ox, Oy, Oz lần lượt tại các điểm A,B,C (khác 0) sao cho (OA+OB+OC) đạt giá trị nhỏ nhất. Tính khoảng cách d từ điểm I(0;1;3) đến mặt phẳng (P).
A. d= 34 5
B. d= 36 5
C. d= 24 7
D. d= 30 7
Trong không gian Oxyz, cho các điểm A(a;0;0), B(0;b;0), C(0;0;c) di động trên các trục Ox, Oy, Oz sao cho 2a+b-c-6=0 và hai điểm M(2;-3;5). Xét các mặt cầu (S) ngoại tiếp tứ diện OABC có tâm I. Khi 2 I M → + I N → đạt giá trị nhỏ nhất thì mặt cầu (S) có diện tích bằng
A. 14 π .
B. 64 π .
C. 56 π .
D. 16 π .
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;1). Mặt phẳng (P) thay đổi đi qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C khác gốc tọa độ. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC
A. 18
B. 9
C. 6
D. 54
Trong không gian Oxyz, cho các điểm A, B, C (không trùng O) lần lượt thay đổi trên các trục Ox, Oy, Oz và luôn thỏa mãn điều kiện: tỉ số giữa diện tích của tam giác ABC và thể tích khối tứ diện OABC bằng 3/2. Biết rằng mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định, bán kính của mặt cầu đó bằng:
A. 3.
B. 2.
C. 4.
D. 1.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm M(2,3,5) cắt các tia Ox, Oy, Oz lần lượt tại ba điểm A, B, C sao cho OA, OB, OC theo thứ tự lập thành cấp số nhân có công bội bằng 3. Khoảng cách từ O đến mặt phẳng (P) là
A. 16 91
B. 24 91
C. 32 91
D. 18 91
Trong không gian Oxyz, cho mặt phẳng (P) thay đổi nhưng luôn đi qua hai điểm là A(2;0;0), M(1;1;1). Cho (P) cắt các tia Oy, Oz lần lượt tại các điểm B, C (khác O). Viết phương trình mặt phẳng (P) sao cho thể tích của từ diện OABC nhỏ nhất.
A. x 2 + y 3 + z 6 = 1
B. x 2 + y 4 + z 4 = 1
C. x 2 + y 6 + z 3 = 1
D. 2x-y-z-2=0
Trong không gian Oxyz, cho các điểm A, B, C (không trùng O) lần lượt thay đổi trên các trục Ox, Oy, Oz và luôn thỏa mãn điều kiện : tỉ số giữa diện tích của tam giác ABC và thể tích khối OABC bằng 3 2 . Biết rằng mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định, bán kính của mặt cầu đó bằng :
A. 3
B. 2
C. 4
D. 1