Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;1;1). Viết phương trình mặt phẳng (P) đi qua M và cắt ba tia Ox, Oy, Oz lần lượt tại các điểm A, B, C khác gốc O sao cho thể tích khối tứ diện OABC nhỏ nhất.
A. 2x-y+2z-3=0.
B. 4x-y-z-6=0
C. 2x+y+2z-6=0
D. x+2y+2z-6=0.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M (1;1;1). Mặt phẳng (P) đi qua M và cắt chiều dương của các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C thỏa mãn OA = 2OB. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC.
A. 64/27
B. 10/3
C. 9/2
D. 81/16
Cho điểm M(1;2;1). Mặt phẳng (P) thay đổi đi qua M lần lượt cắt tia Ox, Oy, Oz tại A, B, C. Giá trị nhỏ nhất của thể tích khối tứ diện OABC là
Trong không gian với hệ tọa độ Oxy, cho mặt phẳng (P): 2y-z+3=0 và điểm A (2;0;0). Mặt phẳng (α) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4/3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng:
A. 8.
B. 16
C. 8/3
D. 16/3
Trong không gian với hệ tọa độ Oxyz, cho điểm M(4;1;9). Gọi (P) là mặt phẳng đi qua M và cắt 3 tia Ox, Oy, Oz lần lượt tại các điểm A,B,C (khác 0) sao cho (OA+OB+OC) đạt giá trị nhỏ nhất. Tính khoảng cách d từ điểm I(0;1;3) đến mặt phẳng (P).
A. d= 34 5
B. d= 36 5
C. d= 24 7
D. d= 30 7
Trong không gian với hệ tọa độ Oxyz, cho A(2;0;0), M(1;1;1). Mặt phẳng (P) thay đổi qua AM cắt các tia Oy; Oz lần lượt tại B, C. Khi mặt phẳng (P) thay đổi thì diện tích tam giác ABC đạt giá trị nhỏ nhất bằng bao nhiêu?
A. 2 6
B. 4 6
C. 3 6
D. 5 6
Trong không gian với hệ tọa độ Oxyz, cho A(2;0;0), M(1;1;1). Mặt phẳng (P) thay đổi qua AM cắt các tia Oy, Oz lần lượt tại B, C. Khi mặt phẳng (P) thay đổi thì diện tích tam giác ABC đạt giá trị nhỏ nhất bằng bao nhiêu?
A. 5 6
B. 2 6
C. 4 6
D. 3 6
Trong không gian với hệ tọa độ Oxyz. Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt trục Ox, Oy, Oz lần lượt tại ba điểm A, B, C khác với gốc tọa độ O sao cho biểu thức 1 O A 2 + 1 O B 2 + 1 O C 2 có đạt giá trị nhỏ nhất
A. P : x + 2 y + 3 z − 14 = 0
B. P : x + 2 y + 3 z − 11 = 0
C. P : x - y - 3 z − 14 = 0
D. P : x + y + 3 z − 14 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;5). Mặt phẳng (P) đi qua điểm M và cắt trục tọa độ Ox, Oy, Oz tại A, B, C sao cho M là trực tâm tam giác ABC. Thể tích của tứ diện OABC là
A. 10 6
B. 450
C. 10
D. 45