Trong không gian Oxyz, cho hai mặt phẳng P : x + y - z + 5 = 0 và Q : 2 x + 2 y - 2 z + 3 = 0 . Khoảng cách giữa y = 1 x 2 + 3 P và Q bằng
A. 2 3
B. 2
C. 7 2
D. 7 3 6
Trong không gian Oxyz, cho đường thẳng ∆: (x-1)/1 = (y-1)/2 = z/2và mặt phẳng (P):x + by + cz -3 = 0 Biết mặt phẳng (P) chứa ∆ và cách O một khoảng lớn nhất. Tổng a+b+c bằng
A.1
B. 3
C. -2
D. -1
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y 1 = z - 2 song song với mặt phẳng (P): x+ y+ z +2 = 0. Khoảng cách giữa d và (P) bằng
A. 2 3
B. 3 3
C. 2 3 3
D. 3
Trong không gian Oxyz, cho hai mặt phẳng (P): x + y - z + 5 = 0 và (Q): 2x + 2y - 2z + 3 =0. Khoảng cách giữa (P) và (Q) là.
A. 2 3
B. 2
C. 7 2
D. 7 3 6
Trong không gian Oxyz, cho mặt phẳng P : 2 x - 2 y + z + 5 = 0 Trong không gian Oxyz, cho mặt phẳng ∆ có phương trình tham số x = - 1 + t y = 2 - t z = - 3 - 4 t . Khoảng cách giữa đường thẳng ∆ và mặt phẳng (P) bằng:
A. - 4 3
B. 4 3
C. 2 3
D. 4 9
Trong không gian Oxyz cho điểm A(1;2;3) và mặt phẳng (P): x + y + z + 3 = 0. Khoảng cách từ A đến mặt phẳng (P) bằng
A. 3 3 .
B. 4 3 .
C. 2 3 .
D. 3 .
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;-2;-3); B(1;1;1) và hai đường thẳng ∆ 1 : x - 2 1 = y - 2 4 = z + 6 - 3 ; ∆ 2 : x - 2 1 = y + 3 - 4 = z - 4 3 . Gọi m là số mặt phẳng (P) tiếp xúc với mặt cầu đường kính AB đồng thời song song với cả hai đường thẳng ∆1;∆2; n là số mặt phẳng (Q), sao cho khoảng cách từ A đến (Q) bằng 15, khoảng cách từ B đến (Q) bằng 10. Chọn mệnh đề đúng trong các mệnh đề sau.
A. m + n = 1
B. m + n = 4
C. m + n = 3
D. m + n = 2
Trong không gian với hệ tọa độ Oxyz có bao nhiêu mặt phẳng song song với mặt phẳng (Q): x + y + z + 3 = 0 cách điểm M(3;2;1) một khoảng bằng 3 3 biết rằng tồn tại một điểm X(a,b,c) trên mặt phẳng đó thỏa mãn a + b + c < –2?
A. 2
B. 1
C. Vô số
D. 0
Trong không gian với hệ tọa độ Oxyz có bao nhiêu mặt phẳng song song với mặt phẳng Q : x + y + z + 3 = 0 , cách điểm M(3;2;1) một khoảng bằng 3 3 biết rằng tồn tại một điểm X(a;b;c) trên mặt phẳng đó thỏa mãn a + b + c < − 2 ?
A. 1
B. Vô số
C. 2
D. 0