Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm O(0;0;0), A(0;1;-2), B(1;2;1), C(4;3;m). Giá trị m để 4 điểm O, A, B, C đồng phẳng là
A. -7
B. -14
C. 14
D. 7
Trong không gian Oxyz, cho các điểm A(6;0;0),B(0;3;0) và mặt phẳng (P):x-2y+2z=0. Gọi d là đường thẳng đi qua M(2;2;0), song song với (P) và tổng khoảng cách từ A,B đến đường thẳng d đạt giá trị nhỏ nhất. Véctơ nào dưới đây là một véctơ chỉ phương của d
A. u 1 → ( - 10 ; 3 ; 8 )
B. u 2 → ( 14 ; - 1 ; - 8 )
C. u 3 → ( 22 ; 3 ; - 8 )
D. u 4 → ( - 18 ; - 1 ; 8 )
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x+2y-2z-10=0 với hai điểm A(1;2;0), B(-1;3;1). Gọi (Q) là một mặt phẳng đi qua A, B đồng thời tạo với (P) một góc nhỏ nhất. Biết rằng phương trình tổng quát của mặt phẳng (Q) là: ax+by+cz+d=0 với a, b, c, d là những số thực, Khi đó giá trị của tổng S = b + c + d bằng
A. 10
B. 12
C. 18
D. -8
Trong không gian Oxyz, cho các điểm A(2;3;3), B(−2;−1;1). Gọi S1 và (S2) lần lượt là hai mặt cầu thay đổi nhưng luôn tiếp xúc với đường thẳng AB lần lượt tại các điểm A, B; đồng thời tiếp xúc ngoài với nhau tại điểm M(a;b;c). Khi khoảng cách từ điểm M đến mặt phẳng (P): x+2y-2z+2018=0 đạt giá trị lớn nhất, giá trị biểu thức a+b+c bằng
A. 4
B. 5
C. 3
D. 2
Trong không gian Oxyz, cho ba điểm A, B, C lần lượt thuộc các tia O x , O y , O z (không trùng với gốc tọa độ) sao cho O A = a , O B = b , O C = c . Giả sử M là một điểm thuộc miền trong của tam giác ABC và có khoảng cách đến các mặt O B C , O C A , O A B lần lượt là 1, 2, 3. Tính tổng S = a + b + c khi thể tích của khối chóp O . A B C đạt giá trị nhỏ nhất
A. S = 18
B. S = 9
C. S = 6
D. S = 24
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;4;5), B(3;4;0), C(2;-1;0) và mặt phẳng ( P ) : 3 x - 3 y - 3 z - 12 = 0 . Gọi M(a;b;c) thuộc (P) sao cho M A 2 + M B 2 + 3 M C 3 đạt giá trị nhỏ nhất. Tính tổng a+b+c.
A. 3.
B. 2
C. –2.
D. –3.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-2;0), B(-3;2;-4) và mặt phẳng P : x + 2 y + z − 3 = 0 . Gọi M(a,b,c) là điểm thuộc mặt phẳng (P) sao cho tam giác MAB cân tại M và có diện tích nhỏ nhất. Tính giá trị T = a 2 + b + c .
A. T = 1.
B. T = 2.
C. T = 0.
D. T = 3.
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1) và mặt phẳng ( P ) : 2 x + 2 y + z - 3 = 0 . Tọa độ điểm M thuộc mặt phẳng (P) sao cho M cách đều ba điểm A, B, C là
A. M(-7;3;2)
B. M(2;3;-7)
C. M(3;2;-7)
D. M(3;-7;2)
Trong không gian với hệ trục tọa độ Oxyz cho A (1; 2; ‒1), B (‒2; 1; 0). Điểm M a ; b ; c thuộc mặt phẳng P : x - 2 y + z + 4 = 0 sao cho M A = M B = 11 2 . Khi đó giá trị của a bằng?
A. a = ± 1 2
B. a = 11 4
C. a = 1 2
D. a = - 1 2