Trong không gian Oxyz, cho điểm A(1; 2; -1), đường thẳng d có phương trình x - 3 1 = y - 3 3 = z 2
và mặt phẳng (a) có phương trình x + y - z + 3 = 0 . Đường thẳng D đi qua điểm A , cắt d và song song với mặt phẳng (a) có phương trình là
A. x - 1 1 = y - 2 - 2 = z + 1 - 1
B. x - 1 1 = y - 2 2 = z + 1 1
C. x - 1 1 = y - 2 2 = z - 1 1
D. x - 1 - 1 = y - 2 - 2 = z + 1 1
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A(1/2; 1; 1). Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng Oxy tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 / 3
B. 7 / 2
C. 21 / 2
D. 3 / 2
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;2;3) và mặt phẳng P : 2 x + y - 4 z + 1 = 0 . Đường thẳng d đi qua điểm A song song với mặt phẳng (P), đồng thời cắt trục Oz. Phương trình tham số của đường thẳng d là
A. x = 1 + 5 t y = 2 - 6 t z = 3 + t
B. x = t y = 2 t z = 2 + t
C. x = 1 + 3 t y = 2 + 2 t z = 3 + t
D. x = 1 - t y = 2 + 6 t z = 3 + t
Trong không gian Oxyz, cho điểm A(1;1;-2) và hai mặt phẳng (P): 3x - y +1 = 0, (Q): x - 2z - 3 = 0. Phương trình đường thẳng d qua điểm A đồng thời song song với cả hai mặt phẳng (P), (Q) là
A. x = 2 + t y = − 6 + t z = 1 − 2 t .
B. x = 5 + 2 t y = 13 + 6 t z = t .
C. x = 1 + 2 t y = 1 − 6 t z = − 2 + t .
D. x = 2 + t y = 6 + t z = 1 − 2 t .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α): 2x+y-2z-2 = 0 và đường thẳng có phương trình d : x + a 1 = y + 2 2 = z + 3 2 và điểm A(1/2;1;1) Gọi ∆ là đường thẳng nằm trong mặt phẳng (α) , song song với d, đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng:
A. 7/3
B. 7/2
C. 21 2
D. 3/2
Trong không gian Oxyz, cho đường thẳng d : x + 2 4 = y − 1 − 4 = z + 2 3 và mặt phẳng P : 2 x − y + 2 z + 1 = 0. Đường thẳng ∆ đi qua E − 2 ; 1 ; − 2 , song song với (P) đồng thời tạo với d góc bé nhất. Biết rằng ∆ có một vector chỉ phương u → m ; n ; 1 . Tính T = m 2 − n 2
A. T = − 5
B. T = 4
C. T = 3
D. T = − 4
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm A 1 ; − 1 ; 2 , song song với mặt phẳng P : 2 x − y − z + 3 = 0 , đồng thời tạo với đường thẳng Δ : x + 1 1 = y − 1 − 2 = z 2 một góc lớn nhất. Phương trình đường thẳng d là
A. x − 1 − 4 = y + 1 5 = z − 2 3
B. x − 1 4 = y − 1 − 2 = z − 2 3
C. x − 1 4 = y + 1 5 = z − 2 − 3
D. x − 1 4 = y + 1 5 = z − 2 3
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và mặt phẳng (P): 2x+y-4z+1=0. Đường thẳng (d) qua điểm A, song song với mặt phẳng (P), đồng thời cắt trục Oz. Viết phương trình tham số đường thẳng (d)
A. x = 1 + 5 t y = 2 - 6 t z = 3 + t
B. x = 1 - t y = 2 + 6 t z = 3 + t
C. x = 1 + 3 t y = 2 + 2 t z = 3 + t
D. x = 1 y = 2 t z = 2 + t
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x 1 = y - 1 2 = z + 2 2 mặt phẳng (P): 2x+y+2z-5=0 và điểm A(1; 1; -2) Phương trình chính tắc của đường thẳng ∆ đi qua A song song với mặt phẳng (P) và vuông góc với d là
A. ∆ : x - 1 1 = y - 1 2 = z + 2 - 2
B. ∆ : x - 1 2 = y - 1 1 = z + 2 - 2
C. ∆ : x - 1 2 = y - 1 2 = z + 2 - 3
D. ∆ : x - 1 1 = y - 2 2 = z + 2 2