Chọn A.
Ta có P(1;1;1) đều thuộc 2 mặt phẳng đã cho.
Chọn A.
Ta có P(1;1;1) đều thuộc 2 mặt phẳng đã cho.
Trong không gian với hệ toạ độ Oxyz, cho hai mặt phẳng (P):2x-y+2z-3=0,(Q):x+y+z-3=0. Giao tuyến của hai mặt phẳng (P),(Q) là một đường thẳng đi qua điểm nào dưới đây ?
A. M(2;-1;0).
B. N(0;-3;0).
C. P(1;1;1).
D. Q(-1;2;-3).
Trong không gian với hệ toạ độ Oxyz, cho hai mặt phẳng P : 2 x - y + 2 z - 3 = 0 , Q : x + y + z - 3 = 0 .Giao tuyến của hai mặt phẳng ( P ) , ( Q ) là một đường thẳng đi qua điểm nào dưới đây ?
A. M 2 ; - 1 ; 0
B. N 0 ; - 3 ; 0
C. P 1 ; 1 ; 1
D. P - 1 ; 2 ; - 3
Trong không gian Oxyz, đường thẳng d đi qua điểm A 3 ; - 1 ; 2 , song song với hai mặt phẳng P : 2 x - 3 y + z - 5 = 0 và Q : x + y - 2 z + 10 = 0 có phương trình là
A. x - 4 1 = y 1 = z - 3 1
B. x - 3 1 = y + 1 - 1 = z - 2 1
C. x + 4 1 = y - 1 = z + 3 1
D. x + 3 1 = y - 1 1 = z + 2 1
Trong không gian Oxyz, cho điểm A(1;1;-2) và hai mặt phẳng (P): 3x - y +1 = 0, (Q): x - 2z - 3 = 0. Phương trình đường thẳng d qua điểm A đồng thời song song với cả hai mặt phẳng (P), (Q) là
A. x = 2 + t y = − 6 + t z = 1 − 2 t .
B. x = 5 + 2 t y = 13 + 6 t z = t .
C. x = 1 + 2 t y = 1 − 6 t z = − 2 + t .
D. x = 2 + t y = 6 + t z = 1 − 2 t .
Trong không gian Oxyz, cho hai điểm M 1 ; 2 ; 3 , A 2 ; 4 ; 4 và hai mặt phẳng Q : x - 2 y - z + 4 = 0 , P : x + y - 2 z + 1 = 0 . Đường thẳng ∆ đi qua điểm M, cắt hai mặt phẳng P , Q lần lượt tại B và C a ; b ; c sao cho tam giác ABC cân tại A và nhận AM làm đường trung tuyến. Tính T = a + b + c .
A. T = 9
B. T = 3
C. T = 7
D. T = 5
Trong không gian với hệ tọa độ Oxyz cho hai điểm A(1;2;-1), B(0;4;0), mặt phẳng (P) có phương trình 2 x - y - 2 z + 2017 = 0 . Mặt phẳng (Q) đi qua hai điểm A, B và tạo với mặt phẳng (P) một góc nhỏ nhất. (Q) có một véc tơ pháp tuyến là n ( Q ) → = ( 1 ; a ; b ) , khi đó a + b bằng
A. 4
B. 0
C. 1
D. -2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 = y + 1 2 = z - 2 1 và mặt phẳng P : 2 x - y - 2 z - 2 = 0 . (Q) là mặt phẳng chứa d và tạo với mặt phẳng (P) một góc nhỏ nhất. Gọi n Q → a ; b ; 1 là một vecto pháp tuyến của (Q). Đẳng thức nào đúng?
A. a - b = - 1
B. a + b = - 2
C. a - b = 1
D. a + b = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 = y + 1 2 = z - 2 1 và mặt phẳng (P): 2x-y-2z-2=0. (Q) là mặt phẳng chứa d và tạo với mặt phẳng (P) một góc nhỏ nhất. Gọi n Q → a , b , 1 là một vecto pháp tuyến của (Q). Đẳng thức nào đúng?
Hỏi đường thẳng giao tuyến của hai mặt phẳng (P): x+2y-z+1=0 và (Q): x+y+2z+3=0 là đường thẳng nào dưới đây ?
A. x + 5 - 5 = y + 2 3 = z 1
B. x + 5 - 5 = y - 2 3 = z - 1 1
C. x + 5 5 = y + 2 - 3 = z - 1
D. x + 5 5 = y - 2 - 3 = z - 1