Ta có:
lần lượt là VTPT của α ; β .
Gọi mặt phẳng cần tìm là mặt phẳng (P) có VTPT n p → .
Ta có:
Chọn C.
Ta có:
lần lượt là VTPT của α ; β .
Gọi mặt phẳng cần tìm là mặt phẳng (P) có VTPT n p → .
Ta có:
Chọn C.
Trong không gian tọa độ Oxyz, cho mặt cầu (S) có phương trình (x-2)2 + (y+1)2 + (z-3)2 = 20. Mặt phẳng có phương trình x-2y+2z-1=0 và đường thẳng ∆ có phương trình x 1 = y + 2 2 = z + 4 - 30 . Viết phương trình đường thẳng ∆ ' nằm trong mặt phẳng α vuông góc với ∆ đồng thời cắt (S) theo một dây cung có độ dài lớn nhất.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : x + y + z - 7 = 0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là:
A. (Q): 5x+y-6z+7=0
B. (Q): 5x-y-6z+7=0
C. (Q): 5x+y-6z-7=0
D. (Q): 5x-y-6z+-=0
Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng ∆ : x - 2 1 = y - 1 1 = z - 2 và vuông góc với mặt phẳng (β):x+y+2z+1=0. Khi đó giao tuyến của hai mặt phẳng (α), (β) có phương trình
A. x - 1 = y + 1 1 = z - 1
B. x 1 = y + 1 1 = z - 1 1
C. x - 2 1 = y + 1 - 5 = z 2
D. x + 2 1 = y - 1 - 5 = z 2
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 1 và mặt phẳng α : x + y + z - 2 = 0 Đường thẳng nằm trong mặt phẳng α , đồng thời vuông góc và cắt đườn thẳng d có phương trình là
A. ∆ 3 : x - 3 3 = y - 2 - 2 = z - 5 1
B. ∆ 1 : x + 2 - 3 = y + 4 2 = z + 4 3
C. ∆ 2 : x - 22 1 = y - 4 - 2 = z - 4 3
D. ∆ 2 : x - 1 3 = y - 1 - 2 = z 1
Trong không gian Oxyz, cho mặt phẳng (P):x+2y+3z-7=0 và hai đường thẳng d 1 : x + 3 2 = y + 2 - 1 = z + 2 - 4 ; d 2 : x + 1 3 = y + 1 2 = z - 2 3 Đường thẳng vuông góc với mặt phẳng (P) và cắt cả hai đường thẳng d1 và d2 có phương trình là
A. x + 7 1 = y 2 = z - 6 3
B. x + 5 1 = y + 1 2 = z - 2 3
C. x + 4 1 = y + 3 2 = z + 1 3
D. x + 3 1 = y + 2 2 = z + 2 3
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 3 và mặt phẳng ( α ) : x + y - z - 2 = 0 . Trong các đường thẳng sau, đường thẳng nào nằm trong mặt phẳng ( α ) : x + y - z - 2 = 0 , đồng thời vuông góc và cắt đường thẳng d?
A. ∆ 3 : x - 5 3 = y - 2 - 2 = z - 5 1
B. ∆ 1 : x + 2 - 3 = y + 4 2 = z + 4 - 1
C. ∆ 2 : x - 2 1 = y - 4 - 2 = z - 4 3
D. ∆ 4 : x - 1 3 = y - 1 - 2 = z 1
Trong không gian Oxyz cho 2 đường thẳng
d 1 : x + 3 2 = y + 2 − 1 = z + 2 − 4 , d 2 : x + 1 3 = y + 1 2 = z − 2 3 và mặt phẳng P : x + 2 y + 3 z − 7 = 0. Đường thẳng vuông góc với mặt phẳng (P), cắt d 1 và d 2 có phương trình là
A. x + 7 1 = y 2 = z − 6 3 .
B. x + 5 1 = y + 1 2 = z − 2 3 .
C. x + 4 1 = y + 3 2 = z + 1 3 .
D. x + 3 1 = y + 2 2 = z + 2 3 .
Trong không gian Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 , d 2 : x - 5 - 3 = y + 1 2 = z - 2 1 và mặt phẳng (P): x +2y +3z -5 =0. Đường thẳng vuông góc với (P), cắt cả d 1 v à d 2 có phương trình là
A. x - 1 3 = y + 1 2 = z 1
B. x - 2 1 = y - 3 2 = z - 1 3
C. x - 1 1 = y + 1 2 = z 3
D. x - 3 1 = y - 3 2 = z + 2 3
Trong không gian Oxyz viết phương trình đường thẳng d song song với hai mặt phẳng (P): 3x+12y-3z-5=0, (Q): 3x-4y+9z+7=0 và đồng thời cắt cả hai đường thẳng d 1 : x + 5 2 = y - 3 - 4 = z + 1 3 ,
d 2 : x - 3 - 2 = y + 1 3 = z - 2 4
A. x + 3 8 = y + 1 3 = z - 2 4
B. x - 3 8 = y + 1 3 = z - 2 4
C. x + 3 - 8 = y + 1 3 = z + 2 4
D. x + 3 - 8 = y + 1 3 = z - 2 4
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x–y+z -1= 0 và (Q):2x+y+1= 0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
A. x+2y+3z+7=0.
B. x-2y+3z+3=0.
C. x+2y-3z–5=0.
D. x–2y–3z-9=0.