Mặt phẳng ( α ) có một véctơ pháp tuyến là n ⇀ ( 1 ; 0 ; 2 )
∆ vuông góc với ( α ) nên có véctơ chỉ phương là a ⇀ = n ⇀ = ( 1 ; 0 ; 2 )
Chọn đáp án C.
Mặt phẳng ( α ) có một véctơ pháp tuyến là n ⇀ ( 1 ; 0 ; 2 )
∆ vuông góc với ( α ) nên có véctơ chỉ phương là a ⇀ = n ⇀ = ( 1 ; 0 ; 2 )
Chọn đáp án C.
Trong không gian Oxyz, cho đường thẳng ∆ vuông góc với mặt phẳng α : x + 2 z + 3 = 0 . Một véctơ chỉ phương của ∆ là
A. b → = 2 ; - 1 ; 0
B. v → 1 ; 2 ; 3
C. a → 1 ; 0 ; 2
D. u → 2 ; 0 ; - 1
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( α ) :x+y-z+1=0 và đường thẳng d: x - 1 1 = y - 2 2 = z - 3 3 . Đường thẳng Δ qua điểm A(1;0;2) và có véctơ chỉ phương u → (a;b;1), cách đường thẳng d một khoảng bằng
A. 3 3
B. 3
C. 2 2
D. 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x - 2 1 = y - 2 1 = z - 1 2 và mặt phẳng (α):x+y+z-1=0. Gọi d là đường thẳng nằm trên (α) đồng thời cắt đường thẳng ∆ và trục Oz. Một véctơ chỉ phương của d là:
A. u → = 1 ; - 2 ; 1
B. u → = 1 ; 1 ; - 2
C. u → = 2 ; - 1 ; - 1
D. u → = 1 ; 2 ; - 3
Trong không gian Oxyz, cho đường thẳng d vuông góc với mặt phẳng (P): x-y+2z+1=0 Một véctơ chỉ phương của d có tọa độ là
A. (1;-1;2)
B. (1;1;-2)
C. (1;1;2)
D. (-1;-1;2).
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Trong không gian với hệ tọa độ (Oxyz), cho đường thẳng d : x 1 = y - 1 2 = z + 1 1 và mặt phẳng (P): x + y + z - 2 = 0. Gọi d' là đường thẳng vuông góc d và song song với mp(P). Véctơ chỉ phương của d' là:
A. u → = 0 ; - 1 ; 1
B. u → = 1 ; 0 ; - 1
C. u → = 2 ; - 1 ; - 1
D. u → = 1 ; 1 ; - 2
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A(1/2; 1; 1). Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng Oxy tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 / 3
B. 7 / 2
C. 21 / 2
D. 3 / 2
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3) và đường thẳng (d): x - 2 2 = y + 2 - 1 = z - 3 1 . Gọi điểm B thuộc trục Ox sao cho AB vuông góc với đường thẳng (d). Khoảng cách từ B đến mặt phẳng ( α ): 2x+2y-z-1=0 là:
A. 2
B. 2 3
C. 1 3
D. 1
Trong không gian Oxyz, cho đường thẳng d : x - 1 2 m + 1 = y + 3 2 = z + 1 m - 2 , m ∉ - 1 2 , 2 và mặt phẳng (P): x+ y+ z−6 = 0. Gọi Δ là hình chiếu vuông góc của d lên mặt phẳng (P). Có bao nhiêu số thực m để Δ vuông góc với véctơ a → - 1 ; 0 ; 1 .
A. 2
B. 6.
C. 3.
D. 0.