A
Gọi M, N, P lần lượt là hình chiếu vuông góc của A trên trục Ox, Oy, Oz.
Từ đó suy ra M 1 ; 0 ; 0 ; N 0 ; − 3 ; 0 ; P 0 ; 0 ; 2
Vậy M N P : x − y 3 + z 2 = 1
A
Gọi M, N, P lần lượt là hình chiếu vuông góc của A trên trục Ox, Oy, Oz.
Từ đó suy ra M 1 ; 0 ; 0 ; N 0 ; − 3 ; 0 ; P 0 ; 0 ; 2
Vậy M N P : x − y 3 + z 2 = 1
Trong không gian với hệ tọa độ Oxyz, cho điểm M(-3;2;4) và đường thẳng d : x + 3 2 = y − 1 − 2 = z + 3 . Gọi A, B, C lần lượt là hình chiếu vuông góc của M trên trục Ox, Oy, Oz và M'(a;b;c) là hình chiếu song song của điểm M theo phương d lên mặt phẳng (ABC). Giá trị của biểu thức T = a + 2 b + 1 2 c là:
A. T = − 3.
B. T = 17 2 .
C. T = 15 17 .
D. T = 3 2 .
Trong không gian với hệ tọa độ Oxyz, cho điểm M(-3;2;4) và đường thẳng d : x + 3 2 = y − 1 − 2 = z + 3 . Gọi A, B, C lần lượt là hình chiếu vuông góc của M trên trục Ox, Oy, Oz và M'(a;b;c) là hình chiếu song song của điểm M theo phương d lên mặt phẳng (ABC). Giá trị của biểu thức T = a + 2 b + 1 2 c là:
A. T = − 3.
B. T = 17 2 .
C. T = 15 17 .
D. T = 3 2 .
Trong không gian Oxyz, cho mặt phẳng (P):x+y+z-3=0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 Hình chiếu vuông góc của d trên (P) có phương trình là
A. x + 1 - 1 = y + 1 - 4 = z + 1 5
B. x - 1 3 = y + 1 - 2 = z - 1 - 1
C. x - 1 1 = y - 1 4 = z - 1 - 5
D. x - 1 1 = y - 4 1 = z + 5 1
Trong không gian Oxyz, cho mặt phẳng (P): x+y +z -3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Hình chiếu vuông góc của d trên (P) có phương trình là
A. x + 1 - 1 = y + 1 - 4 = z - 2 - 1
B. x - 1 3 = y - 1 - 2 = z - 1 - 1
C. x - 1 1 = y - 1 4 = z - 1 - 5
D. x - 1 1 = y - 1 1 = z + 5 1
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d tương ứng có phương trình là 2 x - y + 3 z - 3 = 0 và x + 1 - 2 = y - 2 1 = z + 2 - 1 . Biết đường thẳng d cắt mặt phẳng (P) tại điểm M. Gọi N là điểm thuộc d sao cho M N = 3 , gọi K là hình chiếu vuông góc của điểm N trên mặt phẳng (P). Tính độ dài đoạn MK.
A. M K = 7 105
B. M K = 7 4 21
C. M K = 4 21 7
D. M K = 105 7
Trong không gian với hệ trục Oxyz cho hai điểm A 1 ; 2 ; 1 , B 3 ; 0 ; - 1 và mặt phẳng (P) có phương trình x + y − z = 0. Gọi M và N lần lượt là hình chiếu của A và B trên mặt phẳng (P). Tính độ dài đoạn MN
A. 2 3
B. 4 2 3
C. 2 3
D. 4
Trong không gian Oxyz, cho đường thẳng d : x - 1 2 m + 1 = y + 3 2 = z + 1 m - 2 , m ∉ - 1 2 , 2 và mặt phẳng (P): x+ y+ z−6 = 0. Gọi Δ là hình chiếu vuông góc của d lên mặt phẳng (P). Có bao nhiêu số thực m để Δ vuông góc với véctơ a → - 1 ; 0 ; 1 .
A. 2
B. 6.
C. 3.
D. 0.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian Oxyz, cho đường thẳng d: x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng có phương trình (P): x+y+z+2=0. Đường thẳng Δ nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến Δ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên Δ . Giá trị của bc bằng:
A. -10.
B. 10
C. 12
D. -20